89,223 research outputs found
Self-diffusion in two-dimensional hard ellipsoid suspensions
We studied the self-diffusion of colloidal ellipsoids in a monolayer near a
flat wall by video microscopy. The image processing algorithm can track the
positions and orientations of ellipsoids with sub-pixel resolution. The
translational and rotational diffusions were measured in both the lab frame and
the body frame along the long and short axes. The long-time and short-time
diffusion coefficients of translational and rotational motions were measured as
functions of the particle concentration. We observed sub-diffusive behavior in
the intermediate time regime due to the caging of neighboring particles. Both
the beginning and the ending times of the intermediate regime exhibit power-law
dependence on concentration. The long-time and short-time diffusion
anisotropies change non-monotonically with concentration and reach minima in
the semi-dilute regime because the motions along long axes are caged at lower
concentrations than the motions along short axes. The effective diffusion
coefficients change with time t as a linear function of (lnt)/t for the
translational and rotational diffusions at various particle densities. This
indicates that their relaxation functions decay according to 1/t which provides
new challenges in theory. The effects of coupling between rotational and
translational Brownian motions were demonstrated and the two time scales
corresponding to anisotropic particle shape and anisotropic neighboring
environment were measured
Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 2: Antenna system and interference
The antenna characteristics are analyzed of a low cost mass-producible ground station to be used in broadcast satellite systems. It is found that a prime focus antenna is sufficient for a low-cost but not a low noise system. For the antenna feed waveguide systems are the best choice for the 12 GHz band, while printed-element systems are recommended for the 2.6 GHz band. Zoned reflectors are analyzed and appear to be attractive from the standpoint of cost. However, these reflectors suffer a gain reduction of about one db and a possible increase in sidelobe levels. The off-axis gain of a non-auto-tracking station can be optimized by establishing a special illumination function at the reflector aperture. A step-feed tracking system is proposed to provide automatic procedures for searching for peak signal from a geostationary satellite. This system uses integrated circuitry and therefore results in cost saving under mass production. It is estimated that a complete step-track system would cost only $512 for a production quantity of 1000 units per year
Optimization in the design of a 12 gigahertz low cost ground receiving system for broadcast satellites. Volume 1: System design, performance, and cost analysis
The technical and economical feasibility of using the 12 GHz band for broadcasting from satellites were examined. Among the assigned frequency bands for broadcast satellites, the 12 GHz band system offers the most channels. It also has the least interference on and from the terrestrial communication links. The system design and analysis are carried out on the basis of a decision analysis model. Technical difficulties in achieving low-cost 12 GHz ground receivers are solved by making use of a die cast aluminum packaging, a hybrid integrated circuit mixer, a cavity stabilized Gunn oscillator and other state-of-the-art microwave technologies for the receiver front-end. A working model was designed and tested, which used frequency modulation. A final design for the 2.6 GHz system ground receiver is also presented. The cost of the ground-terminal was analyzed and minimized for a given figure-of-merit (a ratio of receiving antenna gain to receiver system noise temperature). The results were used to analyze the performance and cost of the whole satellite system
Phonon spectral function for an interacting electron-phonon system
Using exact diagonalzation techniques, we study a model of interacting
electrons and phonons. The spectral width of the phonons is found to be reduced
as the Coulomb interaction U is increased. For a system with two modes per
site, we find a transfer of coupling strength from the upper to the lower mode.
This transfer is reduced as U is increased. These results give a qualitative
explanation of differences between Raman and photoemission estimates of the
electron-phonon coupling constants for A3C60 (A= K, Rb).Comment: 4 pages, RevTeX, 2 eps figur
Long-term, multiwavelength light curves of ultra-cool dwarfs: II. The evolving light curves of the T2. 5 SIMP 0136 & the uncorrelated light curves of the M9 TVLM 513
We present multiwavelength, multi-telescope, ground-based follow-up photometry of the white dwarf WD 1145+017, that has recently been suggested to be orbited by up to six or more, short-period, low- mass, disintegrating planetesimals. We detect 9 significant dips in flux of between 10% and 30% of the stellar flux from our ground-based photometry. We observe transits deeper than 10% on average every ∼3.6 hr in our photometry. This suggests that WD 1145+017 is indeed being orbited by multiple, short-period objects. Through fits to the multiple asymmetric transits that we observe, we confirm that the transit egress timescale is usually longer than the ingress timescale, and that the transit duration is longer than expected for a solid body at these short periods, all suggesting that these objects have cometary tails streaming behind them. The precise orbital periods of the planetesimals in this system are unclear from the transit-times, but at least one object, and likely more, have orbital periods of ∼4.5 hours. We are otherwise unable to confirm the specific periods that have been reported, bringing into question the long-term stability of these periods. Our high precision photometry also displays low amplitude variations suggesting that dusty material is consistently passing in front of the white dwarf, either from discarded material from these disintegrating planetesimals or from the detected dusty debris disk. For the significant transits we observe, we compare the transit depths in the V- and R-bands of our multiwavelength photometry, and find no significant difference; therefore, for likely compositions the radius of single-size particles in the cometary tails streaming behind the planetesimals in this system must be ∼0.15 μm or larger, or ∼0.06 μm or smaller, with 2σ confidence
- …
