59,321 research outputs found

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A neural network for mining large volumes of time series data

    Get PDF
    Efficiently mining large volumes of time series data is amongst the most challenging problems that are fundamental in many fields such as industrial process monitoring, medical data analysis and business forecasting. This paper discusses a high-performance neural network for mining large time series data set and some practical issues on time series data mining. Examples of how this technology is used to search the engine data within a major UK eScience Grid project (DAME) for supporting the maintenance of Rolls-Royce aero-engine are presented

    Parafermions, induced edge states and domain walls in the fractional quantum Hall effect spin transitions

    Full text link
    Search for parafermions and Fibonacci anyons, which are excitations obeying non-Abelian statistics, is driven both by the quest for deeper understanding of nature and prospects for universal topological quantum computation. However, physical systems that can host these exotic excitations are rare and hard to realize in experiments. Here we study the domain walls and the edge states formed in spin transitions in the fractional quantum Hall effect. Effective theory approach and exact diagonalization in a disk and torus geometries proves the existence of the counter-propagating edge modes with opposite spin polarizations at the boundary between the two neighboring regions of the two-dimensional electron liquid in spin-polarized and spin-unpolarized phases. By analytical and numerical analysis, we argue that these systems can host parafermions when coupled to an s-wave superconductor and are experimentally feasible. We investigate settings based on ν=23\nu=\frac{2}{3}, ν=43\nu=\frac{4}{3} and ν=53\nu=\frac{5}{3} spin transitions and analyze spin-flipping interactions that hybridize counter-propagating modes. Finally, we discuss spin-orbit interactions of composite fermions.Comment: 17 pages, 12 figure

    Winding number transitions at finite temperature in the Abelian-Higgs model

    Get PDF
    Following our earlier investigations we examine the quantum-classical winding number transition in the Abelian-Higgs system. It is demonstrated that the sphaleron transition in this system is of the smooth second order type in the full range of parameter space. Comparison of the action of classical vortices with that of the sphaleron supports our finding.Comment: final version, to appear in J. Phys.

    Isospin breaking and f0(980)f_0(980)-a0(980)a_0(980) mixing in the η(1405)π0f0(980)\eta(1405) \to \pi^{0} f_0(980) reaction

    Get PDF
    We make a theoretical study of the η(1405)π0f0(980)\eta(1405) \to \pi^{0} f_0(980) and η(1405)π0a0(980)\eta(1405) \to \pi^{0} a_0(980) reactions with an aim to determine the isospin violation and the mixing of the f0(980)f_0(980) and a0(980)a_0(980) resonances. We make use of the chiral unitary approach where these two resonances appear as composite states of two mesons, dynamically generated by the meson-meson interaction provided by chiral Lagrangians. We obtain a very narrow shape for the f0(980)f_0(980) production in agreement with a BES experiment. As to the amount of isospin violation, or f0(980)f_0(980) and a0(980)a_0(980) mixing, assuming constant vertices for the primary η(1405)π0KKˉ\eta(1405)\rightarrow \pi^{0}K\bar{K} and η(1405)π0π0η\eta(1405)\rightarrow \pi^{0}\pi^{0}\eta production, we find results which are much smaller than found in the recent experimental BES paper, but consistent with results found in two other related BES experiments. We have tried to understand this anomaly by assuming an I=1 mixture in the η(1405)\eta(1405) wave function, but this leads to a much bigger width of the f0(980)f_0(980) mass distribution than observed experimentally. The problem is solved by using the primary production driven by ηKKˉ\eta' \to K^* \bar K followed by KKπK^* \to K \pi, which induces an extra singularity in the loop functions needed to produce the f0(980)f_0(980) and a0(980)a_0(980) resonances. Improving upon earlier work along the same lines, and using the chiral unitary approach, we can now predict absolute values for the ratio Γ(π0,π+π)/Γ(π0,π0η)\Gamma(\pi^0, \pi^+ \pi^-)/\Gamma(\pi^0, \pi^0 \eta) which are in fair agreement with experiment. We also show that the same results hold if we had the η(1475)\eta(1475) resonance or a mixture of these two states, as seems to be the case in the BES experiment

    Enhancement of Quantum Tunneling for Excited States in Ferromagnetic Particles

    Full text link
    A formula suitable for a quantitative evaluation of the tunneling effect in a ferromagnetic particle is derived with the help of the instanton method. The tunneling between n-th degenerate states of neighboring wells is dominated by a periodic pseudoparticle configuration. The low-lying level-splitting previously obtained with the LSZ method in field theory in which the tunneling is viewed as the transition of n bosons induced by the usual (vacuum) instanton is recovered. The observation made with our new result is that the tunneling effect increases at excited states. The results should be useful in analyzing results of experimental tests of macroscopic quantum coherence in ferromagnetic particles.Comment: 18 pages, LaTex, 1 figur

    Orbital elements of barium stars formed through a wind accretion scenario

    Get PDF
    Taking the total angular momentum conservation in place of the tangential momentum conservation, and considering the square and higher power terms of orbital eccentricity e, the changes of orbital elements of binaries are calculated for wind accretion scenario. These new equations are used to quantitatively explain the observed (e,logP) properties of normal G, K giants and barium stars. Our results reflect the evolution from G, K giant binaries to barium binaries, moreover, the barium stars with longer orbital periods P>1600 days may be formed by accreting part of the ejecta from the intrinsic AGB stars through wind accretion scenario.Comment: 7 pages, LaTex, 4 PS figures and 1 table included, accepted for publication in A &

    Macroscopic Quantum Coherence in Small Antiferromagnetic Particle and the Quantum Interference Effects

    Get PDF
    Starting from the Hamiltonian operator of the noncompensated two-sublattice model of a small antiferromagnetic particle, we derive the effective Lagrangian of a biaxial antiferromagnetic particle in an external magnetic field with the help of spin-coherent-state path integrals. Two unequal level-shifts induced by tunneling through two types of barriers are obtained using the instanton method. The energy spectrum is found from Bloch theory regarding the periodic potential as a superlattice. The external magnetic field indeed removes Kramers' degeneracy, however a new quenching of the energy splitting depending on the applied magnetic field is observed for both integer and half-integer spins due to the quantum interference between transitions through two types of barriers.Comment: 9 pages, Latex, 4 Postscript figure
    corecore