59,321 research outputs found
Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey
This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
A neural network for mining large volumes of time series data
Efficiently mining large volumes of time series data is amongst the most challenging problems that are fundamental in many fields such as industrial process monitoring, medical data analysis and business forecasting. This paper discusses a high-performance neural network for mining large time series data set and some practical issues on time series data mining. Examples of how this technology is used to search the engine data within a major UK eScience Grid project (DAME) for supporting the maintenance of Rolls-Royce aero-engine are presented
Parafermions, induced edge states and domain walls in the fractional quantum Hall effect spin transitions
Search for parafermions and Fibonacci anyons, which are excitations obeying
non-Abelian statistics, is driven both by the quest for deeper understanding of
nature and prospects for universal topological quantum computation. However,
physical systems that can host these exotic excitations are rare and hard to
realize in experiments. Here we study the domain walls and the edge states
formed in spin transitions in the fractional quantum Hall effect. Effective
theory approach and exact diagonalization in a disk and torus geometries proves
the existence of the counter-propagating edge modes with opposite spin
polarizations at the boundary between the two neighboring regions of the
two-dimensional electron liquid in spin-polarized and spin-unpolarized phases.
By analytical and numerical analysis, we argue that these systems can host
parafermions when coupled to an s-wave superconductor and are experimentally
feasible. We investigate settings based on ,
and spin transitions and analyze spin-flipping interactions
that hybridize counter-propagating modes. Finally, we discuss spin-orbit
interactions of composite fermions.Comment: 17 pages, 12 figure
Recommended from our members
The Aging Heart: Mitophagy at the Center of Rejuvenation.
Aging is associated with structural and functional changes in the heart and is a major risk factor in developing cardiovascular disease. Many recent studies have focused on increasing our understanding of the basis of aging at the cellular and molecular levels in various tissues, including the heart. It is known that there is an age-related decline in cellular quality control pathways such as autophagy and mitophagy, which leads to accumulation of potentially harmful cellular components in cardiac myocytes. There is evidence that diminished autophagy and mitophagy accelerate the aging process, while enhancement preserves cardiac homeostasis and extends life span. Here, we review the current knowledge of autophagy and mitophagy in aging and discuss how age-associated alterations in these processes contribute to cardiac aging and age-related cardiovascular diseases
Winding number transitions at finite temperature in the Abelian-Higgs model
Following our earlier investigations we examine the quantum-classical winding
number transition in the Abelian-Higgs system. It is demonstrated that the
sphaleron transition in this system is of the smooth second order type in the
full range of parameter space. Comparison of the action of classical vortices
with that of the sphaleron supports our finding.Comment: final version, to appear in J. Phys.
Isospin breaking and - mixing in the reaction
We make a theoretical study of the and
reactions with an aim to determine the
isospin violation and the mixing of the and resonances.
We make use of the chiral unitary approach where these two resonances appear as
composite states of two mesons, dynamically generated by the meson-meson
interaction provided by chiral Lagrangians. We obtain a very narrow shape for
the production in agreement with a BES experiment. As to the amount
of isospin violation, or and mixing, assuming constant
vertices for the primary and
production, we find results which
are much smaller than found in the recent experimental BES paper, but
consistent with results found in two other related BES experiments. We have
tried to understand this anomaly by assuming an I=1 mixture in the
wave function, but this leads to a much bigger width of the mass
distribution than observed experimentally. The problem is solved by using the
primary production driven by followed by , which induces an extra singularity in the loop functions needed to
produce the and resonances. Improving upon earlier work
along the same lines, and using the chiral unitary approach, we can now predict
absolute values for the ratio which are in fair agreement with experiment. We also show that the same
results hold if we had the resonance or a mixture of these two
states, as seems to be the case in the BES experiment
Enhancement of Quantum Tunneling for Excited States in Ferromagnetic Particles
A formula suitable for a quantitative evaluation of the tunneling effect in a
ferromagnetic particle is derived with the help of the instanton method. The
tunneling between n-th degenerate states of neighboring wells is dominated by a
periodic pseudoparticle configuration. The low-lying level-splitting previously
obtained with the LSZ method in field theory in which the tunneling is viewed
as the transition of n bosons induced by the usual (vacuum) instanton is
recovered. The observation made with our new result is that the tunneling
effect increases at excited states. The results should be useful in analyzing
results of experimental tests of macroscopic quantum coherence in ferromagnetic
particles.Comment: 18 pages, LaTex, 1 figur
Orbital elements of barium stars formed through a wind accretion scenario
Taking the total angular momentum conservation in place of the tangential
momentum conservation, and considering the square and higher power terms of
orbital eccentricity e, the changes of orbital elements of binaries are
calculated for wind accretion scenario. These new equations are used to
quantitatively explain the observed (e,logP) properties of normal G, K giants
and barium stars. Our results reflect the evolution from G, K giant binaries to
barium binaries, moreover, the barium stars with longer orbital periods P>1600
days may be formed by accreting part of the ejecta from the intrinsic AGB stars
through wind accretion scenario.Comment: 7 pages, LaTex, 4 PS figures and 1 table included, accepted for
publication in A &
Macroscopic Quantum Coherence in Small Antiferromagnetic Particle and the Quantum Interference Effects
Starting from the Hamiltonian operator of the noncompensated two-sublattice
model of a small antiferromagnetic particle, we derive the effective Lagrangian
of a biaxial antiferromagnetic particle in an external magnetic field with the
help of spin-coherent-state path integrals. Two unequal level-shifts induced by
tunneling through two types of barriers are obtained using the instanton
method. The energy spectrum is found from Bloch theory regarding the periodic
potential as a superlattice. The external magnetic field indeed removes
Kramers' degeneracy, however a new quenching of the energy splitting depending
on the applied magnetic field is observed for both integer and half-integer
spins due to the quantum interference between transitions through two types of
barriers.Comment: 9 pages, Latex, 4 Postscript figure
- …
