54,301 research outputs found
Orbital elements of barium stars formed through a wind accretion scenario
Taking the total angular momentum conservation in place of the tangential
momentum conservation, and considering the square and higher power terms of
orbital eccentricity e, the changes of orbital elements of binaries are
calculated for wind accretion scenario. These new equations are used to
quantitatively explain the observed (e,logP) properties of normal G, K giants
and barium stars. Our results reflect the evolution from G, K giant binaries to
barium binaries, moreover, the barium stars with longer orbital periods P>1600
days may be formed by accreting part of the ejecta from the intrinsic AGB stars
through wind accretion scenario.Comment: 7 pages, LaTex, 4 PS figures and 1 table included, accepted for
publication in A &
Candidate MKiD nucleus 106Rh in triaxial relativistic mean-field approach with time-odd fields
The configuration-fixed constrained triaxial relativistic mean-field approach
is extended by including time-odd fields and applied to study the candidate
multiple chiral doublets (MKiD) nucleus 106Rh. The energy contribution from
time-odd fields and microscopical evaluation of center-of-mass correction as
well as the modification of triaxial deformation parameters beta, gamma due to
the time-odd fields are investigated. The contributions of the time-odd fields
to the total energy are 0.1-0.3 MeV and they modify slightly the gamma values.
However, the previously predicted multiple chiral doublets still exist.Comment: 9 pages, 3 figures, accepted for publication as a Brief Report in
Physical Review
Carbon supported CdSe nanocrystals
Insights to the mechanism of CdSe nanoparticle attachment to carbon nanotubes
following the hot injection method are discussed. It was observed that the
presence of water improves the nanotube coverage while Cl containing media are
responsible for the shape transformation of the nanoparticles and further
attachment to the carbon lattice. The experiments also show that the mechanism
taking place involves the right balance of several factors, namely, low
passivated nanoparticle surface, particles with well-defined crystallographic
facets, and interaction with an organics-free sp2 carbon lattice. Furthermore,
this procedure can be extended to cover graphene by quantum dots.Comment: 5 pages, 5 figure
- …
