2,065 research outputs found

    Concerted activities of Mcm4, Sld3 and Dbf4 in control of origin activation and DNA replication fork progression

    Get PDF
    Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins in a temporally specific manner during S phase. The replicative helicase Mcm2-7 functions in both initiation and fork progression and thus is an important target of regulation. Mcm4, a helicase subunit, possesses an unstructured regulatory domain that mediates control from multiple kinase signaling pathways, including the Dbf4-dependent Cdc7 kinase (DDK). Following replication stress in S phase, Dbf4 and Sld3, an initiation factor and essential target of Cyclin-Dependent Kinase (CDK), are targets of the checkpoint kinase Rad53 for inhibition of initiation from origins that have yet to be activated, so-called late origins. Here, whole genome DNA replication profile analysis is employed to access under various conditions the effect of mutations that alter the Mcm4 helicase regulatory domain and the Rad53 targets, Sld3 and Dbf4. Late origin firing occurs under genotoxic stress when the controls on Mcm4, Sld3 and Dbf4 are simultaneously eliminated. The regulatory domain of Mcm4 plays an important role in the timing of late origin firing, both in an unperturbed S phase and dNTP limitation. Furthermore, checkpoint control of Sld3 impacts fork progression under replication stress. This effect is parallel to the role of the Mcm4 regulatory domain in monitoring fork progression. Hypomorph mutations in sld3 are suppressed by a mcm4 regulatory domain mutation. Thus, in response cellular conditions, the functions executed by Sld3, Dbf4 and the regulatory domain of Mcm4 intersect to control origin firing and replication fork progression, thereby ensuring genome stability

    Impurity Band Conduction in a High Temperature Ferromagnetic Semiconductor

    Full text link
    The band structure of a prototypical dilute ferromagnetic semiconductor, Ga1x_{1-x}Mnx_{x}As, is studied across the phase diagram via optical spectroscopy. We prove that the Fermi energy (EFE_{F}) resides in a Mn induced impurity band (IB). This conclusion is based upon careful analysis of the frequency and temperature dependence of the optical conductivity (σ1(ω,T)\sigma_{1}(\omega,T)). From our analysis of σ1(ω,T)\sigma_{1}(\omega,T) we infer a large effective mass (mm^*) of the carriers, supporting the view that conduction occurs in an IB. Our results also provide useful insights into the transport properties of Mn-doped GaAs.Comment: 4 pages, 4 figure

    Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression

    Get PDF
    Eukaryotic DNA synthesis initiates from multiple replication origins and progresses through bidirectional replication forks to ensure efficient duplication of the genome. Temporal control of initiation from origins and regulation of replication fork functions are important aspects for maintaining genome stability. Multiple kinase-signaling pathways are involved in these processes. The Dbf4-dependent Cdc7 kinase (DDK), cyclin-dependent kinase (CDK), and Mec1, the yeast Ataxia telangiectasia mutated/Ataxia telangiectasia mutated Rad3-related checkpoint regulator, all target the structurally disordered N-terminal serine/threonine-rich domain (NSD) of mini-chromosome maintenance subunit 4 (Mcm4), a subunit of the mini-chromosome maintenance (MCM) replicative helicase complex. Using whole-genome replication profile analysis and single-molecule DNA fiber analysis, we show that under replication stress the temporal pattern of origin activation and DNA replication fork progression are altered in cells with mutations within two separate segments of the Mcm4 NSD. The proximal segment of the NSD residing next to the DDK-docking domain mediates repression of late-origin firing by checkpoint signals because in its absence late origins become active despite an elevated DNA damage-checkpoint response. In contrast, the distal segment of the NSD at the N terminus plays no role in the temporal pattern of origin firing but has a strong influence on replication fork progression and on checkpoint signaling. Both fork progression and checkpoint response are regulated by the phosphorylation of the canonical CDK sites at the distal NSD. Together, our data suggest that the eukaryotic MCM helicase contains an intrinsic regulatory domain that integrates multiple signals to coordinate origin activation and replication fork progression under stress conditions

    Operator algebra quantum homogeneous spaces of universal gauge groups

    Full text link
    In this paper, we quantize universal gauge groups such as SU(\infty), as well as their homogeneous spaces, in the sigma-C*-algebra setting. More precisely, we propose concise definitions of sigma-C*-quantum groups and sigma-C*-quantum homogeneous spaces and explain these concepts here. At the same time, we put these definitions in the mathematical context of countably compactly generated spaces as well as C*-compact quantum groups and homogeneous spaces. We also study the representable K-theory of these spaces and compute it for the quantum homogeneous spaces associated to the universal gauge group SU(\infty).Comment: 14 pages. Merged with [arXiv:1011.1073

    Flux through a hole from a shaken granular medium

    Full text link
    We have measured the flux of grains from a hole in the bottom of a shaken container of grains. We find that the peak velocity of the vibration, vmax, controls the flux, i.e., the flux is nearly independent of the frequency and acceleration amplitude for a given value of vmax. The flux decreases with increasing peak velocity and then becomes almost constant for the largest values of vmax. The data at low peak velocity can be quantitatively described by a simple model, but the crossover to nearly constant flux at larger peak velocity suggests a regime in which the granular density near the container bottom is independent of the energy input to the system.Comment: 14 pages, 4 figures. to appear in Physical Review

    Stochastic Ballistic Annihilation and Coalescence

    Full text link
    We study a class of stochastic ballistic annihilation and coalescence models with a binary velocity distribution in one dimension. We obtain an exact solution for the density which reveals a universal phase diagram for the asymptotic density decay. By universal we mean that all models in the class are described by a single phase diagram spanned by two reduced parameters. The phase diagram reveals four regimes, two of which contain the previously studied cases of ballistic annihilation. The two new phases are a direct consequence of the stochasticity. The solution is obtained through a matrix product approach and builds on properties of a q-deformed harmonic oscillator algebra.Comment: 4 pages RevTeX, 3 figures; revised version with some corrections, additional discussion and in RevTeX forma

    Magnetothermopower and Magnetoresistivity of RuSr2Gd1-xLaxCu2O8 (x=0, 0.1)

    Full text link
    We report measurements of magnetothermopower and magnetoresistivity as a function of temperature on RuSr2Gd1-xLaxCu2O8 (x = 0, 0.1). The normal-state thermopower shows a dramatic decrease after applying a magnetic field of 5 T, whereas the resistivity shows only a small change after applying the same field. Our results suggest that RuO2 layers are conducting and the magnetic field induced decrease of the overall thermopower is caused by the decrease of partial thermopower decrease associated with the spin entropy decrease of the carriers in the RuO2 layers.Comment: 21 pages, 6 figure

    Time- and momentum-resolved probe of heat transport in photo-excited bismuth

    Get PDF
    We use time- and momentum-resolved x-ray scattering to study thermalization in a photo-excited thin single crystal bismuth film on sapphire. The time-resolved changes of the diffuse scattering show primarily a quasi-thermal phonon distribution that is established in less than or similar to 100 ps and that follows the time-scale of thermal transport. Ultrafast melting measurements under high laser excitation show that epitaxial regrowth of the liquid phase occurs on the time-scale of thermal transport across the bismuth-sapphire interface. (C) 2013 AIP Publishing LLC. (DOI: 10.1063/1.4804291

    Theoretical Studies of Spectroscopy and Dynamics of Hydrated Electrons.

    Get PDF

    The Static and Dynamic Lattice Changes Induced by Hydrogen Adsorption on NiAl(110)

    Full text link
    Static and dynamic changes induced by adsorption of atomic hydrogen on the NiAl(110) lattice at 130 K have been examined as a function of adsorbate coverage. Adsorbed hydrogen exists in three distinct phases. At low coverages the hydrogen is itinerant because of quantum tunneling between sites and exhibits no observable vibrational modes. Between 0.4 ML and 0.6 ML, substrate mediated interactions produce an ordered superstructure with c(2x2) symmetry, and at higher coverages, hydrogen exists as a disordered lattice gas. This picture of how hydrogen interacts with NiAl(110) is developed from our data and compared to current theoretical predictions.Comment: 36 pages, including 12 figures, 2 tables and 58 reference
    corecore