409,120 research outputs found
Efficient quantum circuits for Toeplitz and Hankel matrices
Toeplitz and Hankel matrices have been a subject of intense interest in a
wide range of science and engineering related applications. In this paper, we
show that quantum circuits can efficiently implement sparse or Fourier-sparse
Toeplitz and Hankel matrices. This provides an essential ingredient for solving
many physical problems with Toeplitz or Hankel symmetry in the quantum setting
with deterministic queries
Readout of solid-state charge qubits using a single-electron pump
A major difficulty in realizing a solid-state quantum computer is the
reliable measurement of the states of the quantum registers. In this paper, we
propose an efficient readout scheme making use of the resonant tunneling of a
ballistic electron produced by a single electron pump. We treat the measurement
interaction in detail by modeling the full spatial configuration, and show that
for pumped electrons with suitably chosen energy the transmission coefficient
is very sensitive to the qubit state. We further show that by using a short
sequence of pumping events, coupled with a simple feedback control procedure,
the qubit can be measured with high accuracy.Comment: 5 pages, revtex4, 4 eps figures. v2: published versio
Neutrino oscillations in de Sitter space-time
We try to understand flavor oscillations and to develop the formulae for
describing neutrino oscillations in de Sitter space-time. First, the covariant
Dirac equation is investigated under the conformally flat coordinates of de
Sitter geometry. Then, we obtain the exact solutions of the Dirac equation and
indicate the explicit form of the phase of wave function. Next, the concise
formulae for calculating the neutrino oscillation probabilities in de Sitter
space-time are given. Finally, The difference between our formulae and the
standard result in Minkowski space-time is pointed out.Comment: 13 pages, no figure
Invariant graphical method for electron-atom scattering coupled-channel equations
We present application examples of a graphical method for the efficient
construction of potential matrix elements in quantum physics or quantum
chemistry. The simplicity and power of this method are illustrated through
several examples. In particular, a complete set of potential matrix elements
for electron-Lithium scattering are derived for the first time using this
method, which removes the frozen core approximation adopted by previous
studies. This method can be readily adapted to study other many-body quantum
systems
Modelling and control of the flame temperature distribution using probability density function shaping
This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained
Macroporous materials: microfluidic fabrication, functionalization and applications
This article provides an up-to-date highly comprehensive overview (594 references) on the state of the art of the synthesis and design of macroporous materials using microfluidics and their applications in different fields
- …
