61,983 research outputs found
Sum Rates, Rate Allocation, and User Scheduling for Multi-User MIMO Vector Perturbation Precoding
This paper considers the multiuser multiple-input multiple-output (MIMO)
broadcast channel. We consider the case where the multiple transmit antennas
are used to deliver independent data streams to multiple users via vector
perturbation. We derive expressions for the sum rate in terms of the average
energy of the precoded vector, and use this to derive a high signal-to-noise
ratio (SNR) closed-form upper bound, which we show to be tight via simulation.
We also propose a modification to vector perturbation where different rates can
be allocated to different users. We conclude that for vector perturbation
precoding most of the sum rate gains can be achieved by reducing the rate
allocation problem to the user selection problem. We then propose a
low-complexity user selection algorithm that attempts to maximize the high-SNR
sum rate upper bound. Simulations show that the algorithm outperforms other
user selection algorithms of similar complexity.Comment: 27 pages with 6 figures and 2 tables. Accepted for publication in
IEEE Trans. Wireless Comm
The Role of Starburst-AGN composites in Luminous Infrared Galaxy Mergers: Insights from the New Optical Classification Scheme
We investigate the fraction of starbursts, starburst-AGN composites,
Seyferts, and LINERs as a function of infrared luminosity (L_IR) and merger
progress for ~500 infrared-selected galaxies. Using the new optical
classifications afforded by the extremely large data set of the Sloan Digital
Sky Survey, we find that the fraction of LINERs in IR-selected samples is rare
(< 5%) compared with other spectral types. The lack of strong infrared emission
in LINERs is consistent with recent optical studies suggesting that LINERs
contain AGN with lower accretion rates than in Seyfert galaxies. Most
previously classified infrared-luminous LINERs are classified as starburst-AGN
composite galaxies in the new scheme. Starburst-AGN composites appear to
"bridge" the spectral evolution from starburst to AGN in ULIRGs. The relative
strength of the AGN versus starburst activity shows a significant increase at
high infrared luminosity. In ULIRGs (L_IR >10^12 L_odot), starburst-AGN
composite galaxies dominate at early--intermediate stages of the merger, and
AGN galaxies dominate during the final merger stages. Our results are
consistent with models for IR-luminous galaxies where mergers of gas-rich
spirals fuel both starburst and AGN, and where the AGN becomes increasingly
dominant during the final merger stages of the most luminous infrared objects.Comment: 30 pages, 19 figures, 10 tables, ApJ accepte
On analysis of chemical reactions coupled gas flows in SOFCs
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.Solid oxide fuel cell (SOFC) is among others one of the most promising technologies for electricity energy generation. A recent new trends is to reduce its operating temperature from 1000oC to 800oC by
employing a thick porous layer as the supporting structure. Various transport processes occurred are strongly affected by catalytic chemical/electrochemical reactions appearing in nano- or/and microstructured and
multi-functional porous electrodes. It is particularly true if methane is used as the fuel, and internal reforming reactions within the microstructured porous anodes enable the conversion of the methane into H2
and CO. To deeply understand the chemical reaction coupled gas flow and heat transfer in the microstructured porous anode, a fully three-dimensional numerical calculation procedure (CFD) is developed and applied. The species mass/heat generation and consumption related to the internal reforming reactions and the electrochemical reaction have been identified and employed in the study. The variable thermalphysical
properties and transport parameters of the fuel gas mixture have also been taken into account. Furthermore, the heat transfer due to the fuel gas flow is implemented into the energy balance based on multi-component diffusion models. Finally, various issues connecting to the micro models of the surface
reactions are discussed and reviewed.Thi study is supported by the Swedish Research Council (VR) and the National Natural Science Foundation of China (NSFC-50706004)
- …
