428,205 research outputs found

    Pair Interaction Potentials of Colloids by Extrapolation of Confocal Microscopy Measurements of Collective Structure

    Full text link
    A method for measuring the pair interaction potential between colloidal particles by extrapolation measurement of collective structure to infinite dilution is presented and explored using simulation and experiment. The method is particularly well suited to systems in which the colloid is fluorescent and refractive index matched with the solvent. The method involves characterizing the potential of mean force between colloidal particles in suspension by measurement of the radial distribution function using 3D direct visualization. The potentials of mean force are extrapolated to infinite dilution to yield an estimate of the pair interaction potential, U(r)U(r). We use Monte Carlo (MC) simulation to test and establish our methodology as well as to explore the effects of polydispersity on the accuracy. We use poly-12-hydroxystearic acid-stabilized poly(methyl methacrylate) (PHSA-PMMA) particles dispersed in the solvent dioctyl phthalate (DOP) to test the method and assess its accuracy for three different repulsive systems for which the range has been manipulated by addition of electrolyte.Comment: 35 pages, 14 figure

    Finite element formulation for linear thermoviscoelastic materials

    Get PDF
    Report presents the finite difference equations in time and finite element matrix equations in space for general linear thermovisoelastic problems. The equations are derived for a general three-dimensional body but are applicable to one- and two-dimensional configurations with minor changes

    Maximizing Hadron Collider Sensitivity to Gauge-Mediated Supersymmetry Breaking Models

    Get PDF
    We consider typical hadron collider detector signals sensitive to delayed decays of the lightest neutralino to photon plus goldstino and demonstrate the potential for substantially increasing the portion of the general parameter space of a gauge-mediated supersymmetry breaking model that can be probed at the Tevatron.Comment: 11 pages, full postscript file is available via anonymous ftp at ftp://ucdhep.ucdavis.edu/gunion/gmsb.ps; incorrect labels on figures correcte

    Fuzzy Chance-constrained Programming Based Security Information Optimization for Low Probability of Identification Enhancement in Radar Network Systems

    Get PDF
    In this paper, the problem of low probability of identification (LPID) improvement for radar network systems is investigated. Firstly, the security information is derived to evaluate the LPID performance for radar network. Then, without any prior knowledge of hostile intercept receiver, a novel fuzzy chance-constrained programming (FCCP) based security information optimization scheme is presented to achieve enhanced LPID performance in radar network systems, which focuses on minimizing the achievable mutual information (MI) at interceptor, while the attainable MI outage probability at radar network is enforced to be greater than a specified confidence level. Regarding to the complexity and uncertainty of electromagnetic environment in the modern battlefield, the trapezoidal fuzzy number is used to describe the threshold of achievable MI at radar network based on the credibility theory. Finally, the FCCP model is transformed to a crisp equivalent form with the property of trapezoidal fuzzy number. Numerical simulation results demonstrating the performance of the proposed strategy are provided

    Magic Wavelengths for Terahertz Clock Transitions

    Full text link
    Magic wavelengths for laser trapping of boson isotopes of alkaline-earth Sr, Ca and Mg atoms are investigated while considering terahertz clock transitions between the 3P0,3P1,3P2^{3}P_{0}, ^{3}P_{1}, ^{3}P_{2} metastable triplet states. Our calculation shows that magic wavelengths of trapping laser do exist. This result is important because those metastable states have already been used to realize accurate clocks in the terahertz frequency domain. Detailed discussions for magic wavelength for terahertz clock transitions are given in this paper.Comment: 7 page

    Structural control by the use of piezoelectric active members

    Get PDF
    Large Space Structures (LSS) exhibit characteristics which make the LSS control problem different form other control problems. LSS will most likely exhibit low frequency, densely spaced and lightly damped modes. In theory, the number of these modes is infinite. Because these structures are flexible, Vibration Suppression (VS) is an important aspect of LSS operation. In terms of VS, the control actuators should be as low mass as possible, have infinite bandwidth, and be electrically powered. It is proposed that actuators be built into the structure as dual purpose structural elements. A piezoelectric active member is proposed for the control of LSS. Such a device would consist of a piezoelectric actuator and sensor for measuring strain, and screwjack actuator in series for use in quasi-static shape control. An experiment simulates an active member using piezoelectric ceramic thin sheet material on a thin, uniform cantilever beam. The feasibility of using the piezoelectric materials for VS on LSS was demonstrated. Positive positive feedback as a VS control strategy was implemented. Multi-mode VS was achieved with dramatic reduction in dynamic response
    corecore