18 research outputs found
Long-range interactions in the effective low energy Hamiltonian of Sr2IrO4: a core level resonant inelastic x-ray scattering study
We have investigated the electronic structure of Sr2IrO4 using core level
resonant inelastic x-ray scattering. The experimental spectra can be well
reproduced using ab initio density functional theory based multiplet ligand
field theory calculations, thereby validating these calculations. We found that
the low-energy, effective Ir t2g orbitals are practically degenerate in energy.
We uncovered that covalency in Sr2IrO4, and generally in iridates, is very
large with substantial oxygen ligand hole character in the Ir t2g Wannier
orbitals. This has far reaching consequences, as not only the onsite
crystal-field energies are determined by the long range crystal-structure, but,
more significantly, magnetic exchange interactions will have long range
distance dependent anisotropies in the spin direction. These findings set
constraints and show pathways for the design of d^5 materials that can host
compass-like magnetic interactions
Long-range interactions in the effective low-energy Hamiltonian of Sr<sub>2</sub>IrO<sub>4</sub>: A core-to-core resonant inelastic x-ray scattering study
We have investigated the electronic structure of Sr2IrO4 using core-to-core resonant inelastic x-ray scattering. The experimental spectra can be well reproduced using ab initio density functional theory based multiplet ligand field theory calculations, thereby validating these calculations. We found that the low-energy, effective Ir t(2g) orbitals are practically degenerate in their crystal-field energy. We uncovered that Sr2IrO4 and iridates in general are negative charge transfer systems with large covalency and a substantial oxygen ligand hole character in the Ir t(2g) Wannier orbitals. This has far reaching consequences, as not only the on-site crystal-field energies are determined by the long-range crystal structure, but, more significantly, magnetic exchange interactions will have long-range distance dependent anisotropies in the spin direction. These findings set constraints and show pathways for the design of d(5) materials that can host compasslike magnetic interactions
