12,380 research outputs found
A search for clusters and groups of galaxies on the line of sight towards 8 lensed quasars
In this paper we present new ESO/VLT FORS1 and ISAAC images of the fields
around eight gravitationally lensed quasars: CTQ414, HE0230-2130,
LBQS1009-0252, B1030+074, HE1104-1805, B1359+154, H1413+117 and HE2149-2745.
When available and deep enough, HST/WFPC2 data were also used to infer the
photometric redshifts of the galaxies around the quasars. The search of galaxy
overdensities in space and redshift, as well as a weak-shear analysis and a
mass reconstruction are presented in this paper. We find that there are most
probably galaxy groups towards CTQ414, HE0230-2130, B1359+154, H1413+117 and
HE2149-2745, with a mass ~ 4x10^14 M_sol h^-1. Considering its photometric
redshift, the galaxy group discovered in the field around HE1104-1805 is
associated with the quasar rather than with the lensing potential.Comment: 14 pages, 11 figures(.jpg
Upper bound on the density of Ruelle resonances for Anosov flows
Using a semiclassical approach we show that the spectrum of a smooth Anosov
vector field V on a compact manifold is discrete (in suitable anisotropic
Sobolev spaces) and then we provide an upper bound for the density of
eigenvalues of the operator (-i)V, called Ruelle resonances, close to the real
axis and for large real parts.Comment: 57 page
Semi-classical study of the Quantum Hall conductivity
The semi-classical study of the integer Quantum Hall conductivity is
investigated for electrons in a bi-periodic potential .
The Hall conductivity is due to the tunnelling effect and we concentrate our
study to potentials having three wells in a periodic cell. A non-zero
topological conductivity requires special conditions for the positions, and
shapes of the wells. The results are derived analytically and well confirmed by
numerical calculations.Comment: 23 pages, 13 figure
Topological properties of quantum periodic Hamiltonians
We consider periodic quantum Hamiltonians on the torus phase space
(Harper-like Hamiltonians). We calculate the topological Chern index which
characterizes each spectral band in the generic case. This calculation is made
by a semi-classical approach with use of quasi-modes. As a result, the Chern
index is equal to the homotopy of the path of these quasi-modes on phase space
as the Floquet parameter (\theta) of the band is varied. It is quite
interesting that the Chern indices, defined as topological quantum numbers, can
be expressed from simple properties of the classical trajectories.Comment: 27 pages, 14 figure
Environmental protection of titanium alloys in centrifugal compressors at 500°C in saline atmosphere
The use of the titanium alloy Ti-6246 (Ti–6Al–2Sn–4Zr–6Mo, wt-%) for gas turbine compressors allows an increase in working temperature and stress level. Under severe service conditions, the material experiences combined high temperature and high mechanical stress and, in saline atmospheres, stress corrosion cracking (SCC) can occur, leading to catastrophic mechanical failure. The present study was performed to evaluate the potential of several surface treatments to protect Ti-6246 alloy, after salt deposit, from hot salt SCC at temperatures ?500°C and 500 MPa static mechanical stress conditions. Shot peening, thermal oxidation and metal–ceramic coatings were investigated. Experimental results confirm the existence of brittle stress corrosion phenomena marked by a low residual elongation of test samples and the presence of oxides on the fracture surfaces. Both shot peening and metal–ceramic coatings increase the hot salt SCC resistance of the alloy. Times to rupture were improved by a factor of 3 for shot peening and by a factor of 10 for metal–ceramic coatings. Inversely, the time to rupture of preoxidised alloys has been halved compared with uncoated alloys. As well as these interesting quantitative results, structural studies of metal–ceramic coatings showed that they are mechanically and chemically compatible with the titanium alloy substructure and should work under severe thermomechanical stresses and aggressive atmospheres
Quantisations of piecewise affine maps on the torus and their quantum limits
For general quantum systems the semiclassical behaviour of eigenfunctions in
relation to the ergodic properties of the underlying classical system is quite
difficult to understand. The Wignerfunctions of eigenstates converge weakly to
invariant measures of the classical system, the so called quantum limits, and
one would like to understand which invariant measures can occur that way,
thereby classifying the semiclassical behaviour of eigenfunctions. We introduce
a class of maps on the torus for whose quantisations we can understand the set
of quantum limits in great detail. In particular we can construct examples of
ergodic maps which have singular ergodic measures as quantum limits, and
examples of non-ergodic maps where arbitrary convex combinations of absolutely
continuous ergodic measures can occur as quantum limits. The maps we quantise
are obtained by cutting and stacking
Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2
We present a detailed investigation of Ba(Fe0.65Ru0.35)2As2 by transport
measurements and Angle Resolved photoemission spectroscopy. We observe that Fe
and Ru orbitals hybridize to form a coherent electronic structure and that Ru
does not induce doping. The number of holes and electrons, deduced from the
area of the Fermi Surface pockets, are both about twice larger than in
BaFe2As2. The contribution of both carriers to the transport is evidenced by a
change of sign of the Hall coefficient with decreasing temperature. Fermi
velocities increase significantly with respect to BaFe2As2, suggesting a
significant reduction of correlation effects. This may be a key to understand
the appearance of superconductivity at the expense of magnetism in undoped iron
pnictides
PHARAO Laser Source Flight Model: Design and Performances
In this paper, we describe the design and the main performances of the PHARAO
laser source flight model. PHARAO is a laser cooled cesium clock specially
designed for operation in space and the laser source is one of the main
sub-systems. The flight model presented in this work is the first
remote-controlled laser system designed for spaceborne cold atom manipulation.
The main challenges arise from mechanical compatibility with space constraints,
which impose a high level of compactness, a low electric power consumption, a
wide range of operating temperature and a vacuum environment. We describe the
main functions of the laser source and give an overview of the main
technologies developed for this instrument. We present some results of the
qualification process. The characteristics of the laser source flight model,
and their impact on the clock performances, have been verified in operational
conditions.Comment: Accepted for publication in Review of Scientific Instrument
- …
