35,596 research outputs found
A New Photometric Model of the Galactic Bar using Red Clump Giants
We present a study of the luminosity density distribution of the Galactic bar
using number counts of red clump giants (RCGs) from the OGLE-III survey. The
data were recently published by Nataf et al. (2013) for 9019 fields towards the
bulge and have RC stars over a viewing area of . The data include the number counts, mean distance modulus
(), dispersion in and full error matrix, from which we fit the data
with several tri-axial parametric models. We use the Markov Chain Monte Carlo
(MCMC) method to explore the parameter space and find that the best-fit model
is the model, with the distance to the GC is 8.13 kpc, the ratio of
semi-major and semi-minor bar axis scale lengths in the Galactic plane
, and vertical bar scale length , is (close to being prolate). The scale length of the stellar
density profile along the bar's major axis is 0.67 kpc and has an angle
of , slightly larger than the value obtained from a similar study
based on OGLE-II data. The number of estimated RC stars within the field of
view is , which is systematically lower than the observed
value. We subtract the smooth parametric model from the observed counts and
find that the residuals are consistent with the presence of an X-shaped
structure in the Galactic centre, the excess to the estimated mass content is
. We estimate the total mass of the bar is . Our results can be used as a key ingredient to construct new density
models of the Milky Way and will have implications on the predictions of the
optical depth to gravitational microlensing and the patterns of hydrodynamical
gas flow in the Milky Way.Comment: 15 pages, 6 figures, 4 tables. MNRAS accepte
Electronic structure and Magnetism in BaMnAs and BaMnSb
We study the properties of ThCrSi structure BaMnAs and
BaMnSb using density functional calculations of the electronic and
magnetic as well experimental measurements on single crystal samples of
BaMnAs. These materials are local moment magnets with moderate band gap
antiferromagnetic semiconducting ground states. The electronic structures show
substantial Mn - pnictogen hybridization, which stabilizes an intermediate spin
configuration for the nominally Mn. The results are discussed in the
context of possible thermoelectric applications and the relationship with the
corresponding iron / cobalt / nickel compounds Ba(Fe,Co,Ni)As
The Formation of Galactic Disks
We study the population of galactic disks expected in current hierarchical
clustering models for structure formation. A rotationally supported disk with
exponential surface density profile is assumed to form with a mass and angular
momentum which are fixed fractions of those of its surrounding dark halo. We
assume that haloes respond adiabatically to disk formation, and that only
stable disks can correspond to real systems. With these assumptions the
predicted population can match both present-day disks and the damped Lyman
alpha absorbers in QSO spectra. Good agreement is found provided: (i) the
masses of disks are a few percent of those of their haloes; (ii) the specific
angular momenta of disks are similar to those of their haloes; (iii)
present-day disks were assembled recently (at z<1). In particular, the observed
scatter in the size-rotation velocity plane is reproduced, as is the slope and
scatter of the Tully-Fisher relation. The zero-point of the TF relation is
matched for a stellar mass-to-light ratio of 1 to 2 h in the I-band, consistent
with observational values derived from disk dynamics. High redshift disks are
predicted to be small and dense, and could plausibly merge together to form the
observed population of elliptical galaxies. In many (but not all) currently
popular cosmogonies, disks with rotation velocities exceeding 200 km/s can
account for a third or more of the observed damped Lyman alpha systems at
z=2.5. Half of the lines-of-sight to such systems are predicted to intersect
the absorber at r>3kpc/h and about 10% at r>10kpc/h. The cross-section for
absorption is strongly weighted towards disks with large angular momentum and
so large size for their mass. The galaxy population associated with damped
absorbers should thus be biased towards low surface brightness systems.Comment: 47 pages, Latex, aaspp4.sty, 14 figs included, submitted to MNRA
- …
