18,154 research outputs found
Photonic band gap and x-ray optics in warm dense matter
Photonic band gaps for the soft x-rays, formed in the periodic structures of
solids or dense plasmas, are theoretically investigated. Optical manipulation
mechanisms for the soft x-rays, which are based on these band gaps, are
computationally demonstrated. The reflection and amplification of the soft
x-rays, and the compression and stretching of chirped soft x-ray pulses are
discussed. A scheme for lasing with atoms with two energy levels, utilizing the
band gap, is also studied.Comment: 3 figures, will be published on Po
Infrared Hall conductivity of NaCoO
We report infrared Hall conductivity of
NaCoO thin films determined from Faraday rotation angle
measurements. exhibits two types of hole
conduction, Drude and incoherent carriers. The coherent Drude carrier shows a
large renormalized mass and Fermi liquid-like behavior of Hall scattering rate,
. The spectral weight is suppressed and disappears at T
= 120K. The incoherent carrier response is centered at mid-IR frequency and
shifts to lower energy with increasing T. Infrared Hall constant is positive
and almost independent of temperature in sharp contrast with the dc-Hall
constant.Comment: 5 Pages, 5 Figures. Author list corrected in metadata only, paper is
unchange
Asymptotic deconfinement in high-density QCD
We discuss QCD with two light flavors at large baryon chemical potential mu.
Color superconductivity leads to partial breaking of the color SU(3) group. We
show that the infrared physics is governed by the gluodynamics of the remaining
SU(2) group with an exponentially soft confinement scale Lambda_QCD'
Delta*exp[-a*mu/(g*Delta)], where Delta<<mu is the superconducting gap, g is
the strong coupling, and a=0.81... We estimate that at moderate baryon
densities Lambda_QCD' is O(10 MeV) or smaller. The confinement radius increases
exponentially with density, leading to "asymptotic deconfinement." The velocity
of the SU(2) gluons is small due to the large dielectric constant of the
medium.Comment: 4 pages; restructured, published versio
Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry
We discuss a realization of the nonrelativistic conformal group (the
Schroedinger group) as the symmetry of a spacetime. We write down a toy model
in which this geometry is a solution to field equations. We discuss various
issues related to nonrelativistic holography. In particular, we argue that free
fermions and fermions at unitarity correspond to the same bulk theory with
different choices for the near-boundary asymptotics corresponding to the source
and the expectation value of one operator. We describe an extended version of
nonrelativistic general coordinate invariance which is realized
holographically.Comment: 14 pages; v2: typos fixed, published versio
Pion Propagation near the QCD Chiral Phase Transition
We point out that, in analogy with spin waves in antiferromagnets, all
parameters describing the real-time propagation of soft pions at temperatures
below the QCD chiral phase transition can be expressed in terms of static
correlators. This allows, in principle, the determination of the soft pion
dispersion relation on the lattice. Using scaling and universality arguments,
we determine the critical behavior of the parameters of pion propagation. We
predict that when the critical temperature is approached from below, the pole
mass of the pion drops despite the growth of the pion screening mass. This fact
is attributed to the decrease of the pion velocity near the phase transition.Comment: 8 pages (single column), RevTeX; added references, version to be
published in PR
Charged and superconducting vortices in dense quark matter
Quark matter at astrophysical densities may contain stable vortices due to
the spontaneous breaking of hypercharge symmetry by kaon condensation. We argue
that these vortices could be both charged and electrically superconducting.
Current carrying loops (vortons) could be long lived and play a role in the
magnetic and transport properties of this matter. We provide a scenario for
vorton formation in protoneutron stars.Comment: Replaced with the published version. A typographical error in Eq. 2
is correcte
Domain walls of high-density QCD
We show that in very dense quark matter there must exist metastable domain
walls where the axial U(1) phase of the color-superconducting condensate
changes by 2pi. The decay rate of the domain walls is exponentially suppressed
and we compute it semiclassically. We give an estimate of the critical chemical
potential above which our analysis is under theoretical control.Comment: 4 pages; Eq. (16) corrected, 2 new references added, published
versio
Hydrodynamics with Triangle Anomalies
We consider the hydrodynamic regime of theories with quantum anomalies for
global currents. We show that a hitherto discarded term in the conserve current
is not only allowed by symmetries, but is in fact required by triangle
anomalies and the second law of thermodynamics. This term leads to a number of
new effects, one of which is chiral separation in a rotating fluid at nonzero
chemical potential. The new kinetic coefficients can be expressed, in a unique
fashion, through the anomalies coefficients and the equation of state. We
briefly discuss the relevance of this new hydrodynamic term for physical
situations, including heavy ion collisions.Comment: 4 pages; v2: error in Eq.(4) correcte
Dirac quasinormal frequencies in Schwarzschild-AdS space-time
We investigate the quasinormal mode frequencies for the massless Dirac field
in static four dimensional space-time. The separation of the Dirac
equation is achieved for the first time in space. Besides the relevance
that this calculation can have in the framework of the correspondence
between M-theory on and SU(N) super Yang-Mills theory on
, it also serves to fill in a gap in the literature, which has only been
concerned with particles of integral spin .Comment: 13 pages, 6 figure
BCS-BEC crossover in a relativistic boson-fermion model beyond mean field approximation
We investigate the fluctuation effect of the di-fermion field in the
crossover from Bardeen-Cooper-Schrieffer (BCS) pairing to a Bose-Einstein
condensate (BEC) in a relativistic superfluid. We work within the boson-fermion
model obeying a global U(1) symmetry. To go beyond the mean field approximation
we use Cornwall-Jackiw-Tomboulis (CJT) formalism to include higher order
contributions. The quantum fluctuations of the pairing condensate is provided
by bosons in non-zero modes, whose interaction with fermions gives the
two-particle-irreducible (2PI) effective potential. It changes the crossover
property in the BEC regime. With the fluctuations the superfluid phase
transition becomes the first order in grand canonical ensemble. We calculate
the condensate, the critical temperature and particle abundances as
functions of crossover parameter the boson mass.Comment: The model Lagrangian is re-formulated by decomposing the complex
scalar field into its real and imaginary parts. The anomalous propagators of
the complex scalar are then included at tree level. All numerical results are
updated. ReVTex 4, 13 pages, 10 figures, PRD accepted versio
- …
