774 research outputs found
Frequency and power dependence of spin-current emission by spin pumping in a thin film YIG/Pt system
This paper presents the frequency dependence of the spin current emission in
a hybrid ferrimagnetic insulator/normal metal system. The system is based on a
ferrimagnetic insulating thin film of Yttrium Iron Garnet (YIG, 200 nm) grown
by liquid-phase-epitaxy (LPE) coupled with a normal metal with a strong
spin-orbit coupling (Pt, 15 nm). The YIG layer presents an isotropic behaviour
of the magnetization in the plane, a small linewidth, and a roughness lower
than 0.4 nm. Here we discuss how the voltage signal from the spin current
detector depends on the frequency [0.6 - 7 GHz], the microwave power, Pin, [1 -
70 mW], and the in-plane static magnetic field. A strong enhancement of the
spin current emission is observed at low frequencies, showing the appearance of
non-linear phenomena.Comment: 7 pages, 5 figure
Spin accumulation probed in multiterminal lateral all-metallic devices
We study spin accumulation in an aluminium island, in which the injection of
a spin current and the detection of the spin accumulation are done by means of
four cobalt electrodes that connect to the island through transparent tunnel
barriers. Although the four electrodes are designed as two electrode pairs of
the same shape, they nonetheless all exhibit distinct switching fields. As a
result the device can have several different magnetic configurations. From the
measurements of the amplitude of the spin accumulation, we can identify these
configurations, and using the diffusion equation for the spin imbalance, we
extract the spin relaxation length ~nm and an
interface spin current polarization at low temperature and
~nm, at room temperature
Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride
We present a fast method to fabricate high quality heterostructure devices by
picking up crystals of arbitrary sizes. Bilayer graphene is encapsulated with
hexagonal boron nitride to demonstrate this approach, showing good electronic
quality with mobilities ranging from 17 000 cm^2/V/s at room temperature to 49
000 cm^2/V/s at 4.2 K, and entering the quantum Hall regime below 0.5 T. This
method provides a strong and useful tool for the fabrication of future high
quality layered crystal devices.Comment: 5 pages, 3 figure
24 \textmu m length spin relaxation length in boron nitride encapsulated bilayer graphene
We have performed spin and charge transport measurements in dual gated high
mobility bilayer graphene encapsulated in hexagonal boron nitride. Our results
show spin relaxation lengths up to 13~\textmu m at room temperature
with relaxation times of 2.5~ns. At 4~K, the diffusion coefficient
rises up to 0.52~m/s, a value 5 times higher than the best achieved for
graphene spin valves up to date. As a consequence, rises up to
24~\textmu m with as high as 2.9~ns. We characterized 3 different
samples and observed that the spin relaxation times increase with the device
length. We explain our results using a model that accounts for the spin
relaxation induced by the non-encapsulated outer regions.Comment: 5 pages and 4 figure
Suppressed spin dephasing for 2D and bulk electrons in GaAs wires due to engineered cancellation of spin-orbit interaction terms
We report a study of suppressed spin dephasing for quasi-one-dimensional
electron ensembles in wires etched into a GaAs/AlGaAs heterojunction system.
Time-resolved Kerr-rotation measurements show a suppression that is most
pronounced for wires along the [110] crystal direction. This is the fingerprint
of a suppression that is enhanced due to a strong anisotropy in spin-orbit
fields that can occur when the Rashba and Dresselhaus contributions are
engineered to cancel each other. A surprising observation is that this
mechanisms for suppressing spin dephasing is not only effective for electrons
in the heterojunction quantum well, but also for electrons in a deeper bulk
layer.Comment: 5 pages, 3 figure
Interplay of Peltier and Seebeck effects in nanoscale nonlocal spin valves
We have experimentally studied the role of thermoelectric effects in
nanoscale nonlocal spin valve devices. A finite element thermoelectric model is
developed to calculate the generated Seebeck voltages due to Peltier and Joule
heating in the devices. By measuring the first, second and third harmonic
voltage response non locally, the model is experimentally examined. The results
indicate that the combination of Peltier and Seebeck effects contributes
significantly to the nonlocal baseline resistance. Moreover, we found that the
second and third harmonic response signals can be attributed to Joule heating
and temperature dependencies of both Seebeck coefficient and resistivity.Comment: 4 pages, 4 figure
Controlling spin relaxation in hexagonal BN-encapsulated graphene with a transverse electric field
We experimentally study the electronic spin transport in hBN encapsulated
single layer graphene nonlocal spin valves. The use of top and bottom gates
allows us to control the carrier density and the electric field independently.
The spin relaxation times in our devices range up to 2 ns with spin relaxation
lengths exceeding 12 m even at room temperature. We obtain that the ratio
of the spin relaxation time for spins pointing out-of-plane to spins in-plane
is 0.75 for zero applied perpendicular
electric field. By tuning the electric field this anisotropy changes to
0.65 at 0.7 V/nm, in agreement with an electric field tunable in-plane
Rashba spin-orbit coupling
Spin transport in graphene nanostructures
Graphene is an interesting material for spintronics, showing long spin
relaxation lengths even at room temperature. For future spintronic devices it
is important to understand the behavior of the spins and the limitations for
spin transport in structures where the dimensions are smaller than the spin
relaxation length. However, the study of spin injection and transport in
graphene nanostructures is highly unexplored. Here we study the spin injection
and relaxation in nanostructured graphene with dimensions smaller than the spin
relaxation length. For graphene nanoislands, where the edge length to area
ratio is much higher than for standard devices, we show that enhanced spin-flip
processes at the edges do not seem to play a major role in the spin relaxation.
On the other hand, contact induced spin relaxation has a much more dramatic
effect for these low dimensional structures. By studying the nonlocal spin
transport through a graphene quantum dot we observe that the obtained values
for spin relaxation are dominated by the connecting graphene islands and not by
the quantum dot itself. Using a simple model we argue that future nonlocal
Hanle precession measurements can obtain a more significant value for the spin
relaxation time for the quantum dot by using high spin polarization contacts in
combination with low tunneling rates
Observation of the spin Peltier effect
We report the observation of the spin Peltier effect (SPE) in the
ferrimagnetic insulator Yttrium Iron Garnet (YIG), i.e. a heat current
generated by a spin current flowing through a Platinum (Pt)|YIG interface. The
effect can be explained by the spin torque that transforms the spin current in
the Pt into a magnon current in the YIG. Via magnon-phonon interactions the
magnetic fluctuations modulate the phonon temperature that is detected by a
thermopile close to the interface. By finite-element modelling we verify the
reciprocity between the spin Peltier and spin Seebeck effect. The observed
strong coupling between thermal magnons and phonons in YIG is attractive for
nanoscale cooling techniques.Comment: 5 pages, 3 figures, 4 pages supplementary information, 4
supplementary figure
- …
