26,918 research outputs found
High-temperature oxidation and erosion-resistant refractory coatings
Various refractory coating systems were evaluated for rocket nozzle applications by actual rocket test firings. A reference is noted which identifies failure mechanisms and gives results of the firing tests for 18 coating systems. Iridium, iridium-rhenium, and hafnium oxide-zirconium oxide coatings show most promising results
Stability Analysis of Turing Patterns Generated by the Schnakenberg Model
We consider the following Schnakenberg model on the interval (−1, 1): ut = D1u − u + vu2 in (−1, 1), vt = D2v + B − vu2 in (−1, 1), u (−1) = u (1) = v (−1) = v (1) = 0, where D1 > 0, D2 > 0, B>0. We rigorously show that the stability of symmetric N−peaked steady-states can be reduced to computing two matrices in terms of the diffusion coefficients D1,D2 and the number N of peaks. These matrices and their spectra are calculated explicitly and sharp conditions for linear stability are derived. The results are verified by some numerical simulations
Examination of Factors Influencing Crop Insurance Purchase Decisions of Illinois Farmers
Farm Management, Risk and Uncertainty,
Baseline design of the filters for the LAD detector on board LOFT
The Large Observatory for X-ray Timing (LOFT) was one of the M3 missions
selected for the phase A study in the ESA's Cosmic Vision program. LOFT is
designed to perform high-time-resolution X-ray observations of black holes and
neutron stars. The main instrument on the LOFT payload is the Large Area
Detector (LAD), a collimated experiment with a nominal effective area of ~10 m
2 @ 8 keV, and a spectral resolution of ~240 eV in the energy band 2-30 keV.
These performances are achieved covering a large collecting area with more than
2000 large-area Silicon Drift Detectors (SDDs) each one coupled to a collimator
based on lead-glass micro-channel plates. In order to reduce the thermal load
onto the detectors, which are open to Sky, and to protect them from out of band
radiation, optical-thermal filter will be mounted in front of the SDDs.
Different options have been considered for the LAD filters for best compromise
between high quantum efficiency and high mechanical robustness. We present the
baseline design of the optical-thermal filters, show the nominal performances,
and present preliminary test results performed during the phase A study.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014:
Ultraviolet to Gamma Ray, 91446
Crop Insurance Purchase Decisions: A Study of Northern Illinois Farmers
When selecting crop insurance coverage, farmers must consider multiple factors. The importance associated with factors that are considered when making crop insurance decisions varies among individual farmers. As available crop insurance options increase, selecting the appropriate coverage becomes a more complicated process. The prevalence of crop insurance participation and the existence of multiple selection criteria also makes understanding participant decisions more difficult. This paper provides findings of a mail survey conducted among farmers in northern Illinois. Mainly, this paper examines factors influencing farmers’ crop insurance purchase decisions, types of coverage purchased, and farmers’ risk attitudes.Crop Production/Industries,
Correlations of the IR Luminosity and Eddington Ratio with a Hard X-ray Selected Sample of AGN
We use the SWIFT Burst Alert Telescope (BAT) sample of hard x-ray selected
active galactic nuclei (AGN) with a median redshift of 0.03 and the 2MASS J and
K band photometry to examine the correlation of hard x-ray emission to
Eddington ratio as well as the relationship of the J and K band nuclear
luminosity to the hard x-ray luminosity. The BAT sample is almost unbiased by
the effects of obscuration and thus offers the first large unbiased sample for
the examination of correlations between different wavelength bands. We find
that the near-IR nuclear J and K band luminosity is related to the BAT (14 -
195 keV) luminosity over a factor of in luminosity ()and thus is unlikely to be due to dust. We also find that the
Eddington ratio is proportional to the x-ray luminosity. This new result should
be a strong constraint on models of the formation of the broad band continuum.Comment: accepted to ApJ
Intercontinental antenna arraying by symbol stream combining at ICE Giacobini-Zinner encounter
Deep space tracking stations on different continents were arrayed during the encounter of the International Cometary Explorer (ICE) spacecraft with the comet Giacobini-Zinner during September 9 through 12, 1985. This is the first time that telemetry signals received on different continents have been combined to enhance signal to noise ratio. The arraying was done in non-real time using the method of symbol stream combining. The improvement in signal to noise ratio was typically 2 dB over the stronger of the two stations in each array
3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle: III. Thermochemical tomography in the Western-Central U.S.
Acknowledgments We are indebted to F. Darbyshire and J. von Hunen for useful comments on earlier versions of this work. This manuscript benefited from thorough and constructive reviews by W. Levandowski and an anonymous reviewer. We also thank J. Connolly, M. Sambridge, B. Kennett, S. Lebedev, B. Shan, U. Faul, and M. Qashqai for insightful discussions about, and contributions to, some of the concepts presented in this paper. The work of J.C.A. has been supported by two Australian Research Council Discovery grants (DP120102372 and DP110104145). Seismic data are from the IRIS DMS. D.L.S. acknowledges support from NSF grant EAR-135866. This is contribution 848 from the ARC Centre of Excellence for Core to Crust Fluid Systems (http://www.ccfs.mq.edu.au) and 1106 in the GEMOC Key Centre (http://www.gemoc.mq.edu.au).Peer reviewedPublisher PD
The NASA CSTI high capacity power project
The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed
- …
