53,332 research outputs found
90 degree polarization rotator using a bilayered chiral metamaterial with giant optical activity
A bilayered chiral metamaterial (CMM) is proposed to realize a 90 degree
polarization rotator, whose giant optical activity is due to the transverse
magnetic dipole coupling among the metallic wire pairs of enantiomeric
patterns. By transmission through this thin bilayered structure of less than
\lambda/30 thick, a linearly polarized wave is converted to its cross
polarization with a resonant polarization conversion efficiency (PCE) of over
90%. Meanwhile, the axial ratio of the transmitted wave is better than 40 dB.
It is demonstrated that the chirality in the propagation direction makes this
efficient cross-polarization conversion possible. The transversely isotropic
property of this polarization rotator is also experimentally verified. The
optical activity of the present structure is about 2700 degree/\lambda, which
is the largest optical activity that can be found in literature.Comment: 16 pages, 4 figure
Modelling of quantum information processing with Ehrenfest guided tra jectories: a case study
We apply a numerical method based on multi-configurational Ehrenfest tra
jectories, and demonstrate converged results for the Choi fidelity of an
entangling quantum gate between two two-level systems interacting through a set
of bosonic modes. We consider both spin-boson and rotating wave Hamiltonians,
for various numbers of mediating modes (from 1 to 100), and extend our
treatment to include finite temperatures. Our results apply to two-level
impurities interacting with the same band of a photonic crystal, or to two
distant ions interacting with the same set of motional degrees of freedom.Comment: 12 pages, figures aplent
Classical Trajectory Perspective on Double Ionization Dynamics of Diatomic Molecules Irradiated by Ultrashort Intense Laser Pulses
In the present paper, we develop a semiclassical quasi-static model
accounting for molecular double ionization in an intense laser pulse. With this
model, we achieve insight into the dynamics of two highly-correlated valence
electrons under the combined influence of a two-center Coulomb potential and an
intense laser field, and reveal the significant influence of molecular
alignment on the ratio of double over single ion yield. Analysis on the
classical trajectories unveils sub-cycle dynamics of the molecular double
ionization. Many interesting features, such as the accumulation of emitted
electrons in the first and third quadrants of parallel momentum plane, the
regular pattern of correlated momentum with respect to the time delay between
closest collision and ionization moment, are revealed and successfully
explained by back analyzing the classical trajectories. Quantitative agreement
with experimental data over a wide range of laser intensities from tunneling to
over-the-barrier regime is presented.Comment: 8 pages, 9 figure
Hofstadter-type energy spectra in lateral superlattices defined by periodic magnetic and electrostatic fields
We calculate the energy spectrum of an electron moving in a two-dimensional
lattice which is defined by an electric potential and an applied perpendicular
magnetic field modulated by a periodic surface magnetization. The spatial
direction of this magnetization introduces complex phases into the Fourier
coefficients of the magnetic field. We investigate the effect of the relative
phases between electric and magnetic modulation on band width and internal
structure of the Landau levels.Comment: 5 LaTeX pages with one gif figure to appear in Phys. Rev.
Cavity optomechanics using an optically levitated nanosphere
Recently, remarkable advances have been made in coupling a number of high-Q
modes of nano-mechanical systems to high-finesse optical cavities, with the
goal of reaching regimes where quantum behavior can be observed and leveraged
toward new applications. To reach this regime, the coupling between these
systems and their thermal environments must be minimized. Here we propose a
novel approach to this problem, in which optically levitating a nano-mechanical
system can greatly reduce its thermal contact, while simultaneously eliminating
dissipation arising from clamping. Through the long coherence times allowed,
this approach potentially opens the door to ground-state cooling and coherent
manipulation of a single mesoscopic mechanical system or entanglement
generation between spatially separate systems, even in room temperature
environments. As an example, we show that these goals should be achievable when
the mechanical mode consists of the center-of-mass motion of a levitated
nanosphere.Comment: 33 pages, 6 figures, minor revisions, references adde
Giant microwave photoresistance of two-dimensional electron gas
We measure microwave frequency (4-40 GHz) photoresistance at low magnetic
field B, in high mobility 2D electron gas samples, excited by signals applied
to a transmission line fabricated on the sample surface. Oscillatory
photoresistance vs B is observed. For excitation at the cyclotron resonance
frequency, we find an unprecedented, giant relative photoresistance (\Delta
R)/R of up to 250 percent. The photoresistance is apparently proportional to
the square root of applied power, and disappears as the temperature is
increased.Comment: 4 pages, 3 figure
Diffuse Neutron Scattering Study of Relaxor Ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3(PZN-xPT)
Diffuse neutron scattering is a valuable tool to obtain information about the
size and orientation of the polar nanoregions that are a characteristic feature
of relaxor ferroelectrics. In this paper, we present new diffuse scattering
results obtained on Pb(Zn1/3Nb2/3)O3 (PZN for short) and
(1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3(PZN-xPT)single crystals (with x=4.5 and 9%),
around various Bragg reflections and along three symmetry directions in the
[100]-[011] zone. Diffuse scattering is observed around reflections with mixed
indices, (100), (011) and (300), and along transverse and diagonal directions
only. No diffuse scattering is found in longitudinal scans. The diffuse
scattering peaks can be fitted well with a Lorentzian function, from which a
correlation length is extracted. The correlation length increases with
decreasing temperatures down to the transition at Tc, first following a
Curie-Weiss law, then departing from it and becoming flat at very low
temperatures. These results are interpreted in terms of three temperature
regions: 1) dynamic polarization fluctuations (i.e. with a finite lifetime) at
high temperatures, 2) static polarization reorientations (condensation of polar
nanoregions) that can still reorient as a unit (relaxor behavior) at
intermediate temperatures and 3) orientational freezing of the polar
nanoregions with random strain fields in pure PZN or a structural phase
transition in PZN-xPT at low temperatures. The addition of PT leads to a
broadening of the diffuse scattering along the diagonal ([111]) relative to the
transverse ([100]) direction, indicating a change in the orientation of the
polar regions. Also, with the addition of PT, the polar nanoregions condense at
a higher temperature above Tc.Comment: AIP 6x9 style files, 9 pages, 5 figures, Conference-Fundamental
Physics of Ferroelectrics 200
Trapping of single atoms in cavity QED
By integrating the techniques of laser cooling and trapping with those of
cavity quantum electrodynamics (QED), single Cesium atoms have been trapped
within the mode of a small, high finesse optical cavity in a regime of strong
coupling. The observed lifetime for individual atoms trapped within the cavity
mode is ms, and is limited by fluctuations of light forces
arising from the far-detuned intracavity field. This initial realization of
trapped atoms in cavity QED should enable diverse protocols in quantum
information science.Comment: 4 pages, 4 figure
Extreme Nonlinear Optics in a Femtosecond Enhancement Cavity
Intrinsic to the process of high-order harmonic generation is the creation of
plasma and the resulting spatiotemporal distortions of the driving laser pulse.
Inside a high finesse cavity where the driver pulse and gas medium are reused,
this can lead to optical bistability of the cavity-plasma system, accumulated
self-phase modulation of the intracavity pulse, and coupling to higher order
cavity modes. We present an experimental and theoretical study of these effects
and discuss their implications for power scaling of intracavity high-order
harmonic generation and extreme ultraviolet frequency combs
Precision spectroscopy and density-dependent frequency shifts in ultracold Sr
By varying the density of an ultracold Sr sample from cm
to cm, we make the first definitive measurement of the
density-related frequency shift and linewidth broadening of the -
optical clock transition in an alkaline earth system. In addition, we
report the most accurate measurement to date of the Sr
optical clock transition frequency. Including a detailed analysis of systematic
errors, the frequency is () Hz.Comment: 4 pages, 4 figures, 1 table. submitte
- …
