3,358 research outputs found
Vertex Operators in 4D Quantum Gravity Formulated as CFT
We study vertex operators in 4D conformal field theory derived from quantized
gravity, whose dynamics is governed by the Wess-Zumino action by Riegert and
the Weyl action. Conformal symmetry is equal to diffeomorphism symmetry in the
ultraviolet limit, which mixes positive-metric and negative-metric modes of the
gravitational field and thus these modes cannot be treated separately in
physical operators. In this paper, we construct gravitational vertex operators
such as the Ricci scalar, defined as space-time volume integrals of them are
invariant under conformal transformations. Short distance singularities of
these operator products are computed and it is shown that their coefficients
have physically correct sign. Furthermore, we show that conformal algebra holds
even in the system perturbed by the cosmological constant vertex operator as in
the case of the Liouville theory shown by Curtright and Thorn.Comment: 26 pages, rewrote review part concisely, added explanation
Lattice Distortion and Magnetism of 3d- Perovskite Oxides
Several puzzling aspects of interplay of the experimental lattice distortion
and the the magnetic properties of four narrow -band perovskite oxides
(YTiO, LaTiO, YVO, and LaVO) are clarified using results of
first-principles electronic structure calculations. First, we derive parameters
of the effective Hubbard-type Hamiltonian for the isolated bands using
newly developed downfolding method for the kinetic-energy part and a hybrid
approach, based on the combination of the random-phase approximation and the
constraint local-density approximation, for the screened Coulomb interaction
part. Then, we solve the obtained Hamiltonian using a number of techniques,
including the mean-field Hartree-Fock (HF) approximation, the second-order
perturbation theory for the correlation energy, and a variational superexchange
theory. Even though the crystal-field splitting is not particularly large to
quench the orbital degrees of freedom, the crystal distortion imposes a severe
constraint on the form of the possible orbital states, which favor the
formation of the experimentally observed magnetic structures in YTiO,
YVO_, and LaVO even at the HF level. Beyond the HF approximation, the
correlations effects systematically improve the agreement with the experimental
data. Using the same type of approximations we could not reproduce the correct
magnetic ground state of LaTiO. However, we expect that the situation may
change by systematically improving the level of approximations for dealing with
the correlation effects.Comment: 30 pages, 17 figures, 8 tables, high-quality figures are available
via e-mai
Recursion Relations in Liouville Gravity coupled to Ising Model satisfying Fusion Rules
The recursion relations of 2D quantum gravity coupled to the Ising model
discussed by the author previously are reexamined. We study the case in which
the matter sector satisfies the fusion rules and only the primary operators
inside the Kac table contribute. The theory involves unregularized divergences
in some of correlators. We obtain the recursion relations which form a closed
set among well-defined correlators on sphere, but they do not have a beautiful
structure that the bosonized theory has and also give an inconsistent result
when they include an ill-defined correlator with the divergence. We solve them
and compute the several normalization independent ratios of the well-defined
correlators, which agree with the matrix model results.Comment: Latex, 22 page
Making a Universe
For understanding the origin of anisotropies in the cosmic microwave
background, rules to construct a quantized universe is proposed based on the
dynamical triangulation method of the simplicial quantum gravity. A
-dimensional universe having the topology is created numerically in
terms of a simplicial manifold with -simplices as the building blocks. The
space coordinates of a universe are identified on the boundary surface , and the time coordinate is defined along the direction perpendicular
to . Numerical simulations are made mainly for 2-dimensional
universes, and analyzed to examine appropriateness of the construction rules by
comparing to analytic results of the matrix model and the Liouville theory.
Furthermore, a simulation in 4-dimension is made, and the result suggests an
ability to analyze the observations on anisotropies by comparing to the scalar
curvature correlation of a -surface formed as the last scattering
surface in the universe.Comment: 27pages,18figures,using jpsj.st
Insecta, Coleoptera, Elmidae, Amazon region
A list of Elmidae species from Amazon is presented. The list was prepared based on a literature surveyand examination of the entomological collection of Instituto Nacional de Pesquisas da Amazônia (INPA). The listincludes 102 species, with ten new occurrences recorded, being one for the Amazon (which includes areas ofBrazil, Bolivia, Colombia, Guyana, French Guyana, Peru, Suriname and Venezuela) three for the Amazonas state,and six for other localities in Brazil. Reports about species bibliography contents were also included, as well asavailable species municipalities distributional data
Entanglement-assisted quantum low-density parity-check codes
This paper develops a general method for constructing entanglement-assisted
quantum low-density parity-check (LDPC) codes, which is based on combinatorial
design theory. Explicit constructions are given for entanglement-assisted
quantum error-correcting codes (EAQECCs) with many desirable properties. These
properties include the requirement of only one initial entanglement bit, high
error correction performance, high rates, and low decoding complexity. The
proposed method produces infinitely many new codes with a wide variety of
parameters and entanglement requirements. Our framework encompasses various
codes including the previously known entanglement-assisted quantum LDPC codes
having the best error correction performance and many new codes with better
block error rates in simulations over the depolarizing channel. We also
determine important parameters of several well-known classes of quantum and
classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review
On Electron Transport in ZrB12, ZrB2 and MgB2
We report on measurements of the temperature dependence of resistivity,
, for single crystal samples of ZrB, ZrB and
polycrystalline samples of MgB. It is shown that cluster compound
ZrB behaves like a simple metal in the normal state, with a typical
Bloch -- Gr\"uneisen dependence. However, the resistive Debye
temperature, , is three times smaller than obtained from
specific heat data. We observe the term in of these borides,
which could be interpreted as an indication of strong electron-electron
interaction. Although the dependence of ZrB reveals a sharp
superconductive transition at , no superconductivity was observed
for single crystal samples of ZrB down to .Comment: 5 pages, 4 figure
Carbon Nanotubes Band Assignation, Topology, Bloch States and Selection Rules
Various properties of the energy band structures (electronic, phonon, etc.),
including systematic band degeneracy, sticking and extremes, following from the
full line group symmetry of the single-wall carbon nanotubes are established.
The complete set of quantum numbers consists of quasi momenta (angular and
linear or helical) and parities with respect to the z-reversal symmetries and,
for achiral tubes, the vertical plane. The assignation of the electronic bands
is performed, and the generalized Bloch symmetry adapted eigen functions are
derived. The most important physical tensors are characterized by the same set
of quantum numbers. All this enables application of the presented exhaustive
selection rules. The results are discussed by some examples, e.g. allowed
interband transitions, conductivity, Raman tensor, etc.Comment: 11 pages, 2 figures, 2 tables; pdf available from:
http://www.ff.bg.ac.yu/qmf/qsg_e.ht
Tema Con Variazioni: Quantum Channel Capacity
Channel capacity describes the size of the nearly ideal channels, which can
be obtained from many uses of a given channel, using an optimal error
correcting code. In this paper we collect and compare minor and major
variations in the mathematically precise statements of this idea which have
been put forward in the literature. We show that all the variations considered
lead to equivalent capacity definitions. In particular, it makes no difference
whether one requires mean or maximal errors to go to zero, and it makes no
difference whether errors are required to vanish for any sequence of block
sizes compatible with the rate, or only for one infinite sequence.Comment: 32 pages, uses iopart.cl
Topological Phases in Graphitic Cones
The electronic structure of graphitic cones exhibits distinctive topological
features associated with the apical disclinations. Aharonov-Bohm
magnetoconductance oscillations (period Phi_0) are completely absent in rings
fabricated from cones with a single pentagonal disclination. Close to the apex,
the local density of states changes qualitatively, either developing a cusp
which drops to zero at the Fermi energy, or forming a region of nonzero density
across the Fermi energy, a local metalization of graphene.Comment: 4 pages, RevTeX 4, 3 PostScript figure
- …
