499,244 research outputs found

    Nonsingular density profiles of dark matter halos and Strong gravitational lensing

    Full text link
    We use the statistics of strong gravitational lenses to investigate whether mass profiles with a flat density core are supported. The probability for lensing by halos modeled by a nonsingular truncated isothermal sphere (NTIS) with image separations greater than a certain value (ranging from zero to ten arcseconds) is calculated. NTIS is an analytical model for the postcollapse equilibrium structure of virialized objects derived by Shapiro, Iliev & Raga. This profile has a soft core and matches quite well with the mass profiles of dark matter-dominated dwarf galaxies deduced from their observed rotation curves. It also agrees well with the NFW (Navarro-Frenk-White) profile at all radii outside of a few NTIS core radii. Unfortunately, comparing the results with those for singular lensing halos (NFW and SIS+NFW) and strong lensing observations, the probabilities for lensing by NTIS halos are far too low. As this result is valid for any other nonsingular density profiles (with a large core radius), we conclude that nonsingular density profiles (with a large core radius) for CDM halos are ruled out by statistics of strong gravitational lenses.Comment: 17 pages, 4 figures, ApJ accepted. Final version matches the proofs. A curve in figure 2 is corrected, conclusions unchange

    Supercurrent conservation in the lattice Wess-Zumino model with Ginsparg-Wilson fermions

    Full text link
    We study supercurrent conservation for the four-dimensional Wess-Zumino model formulated on the lattice. The formulation is one that has been discussed several times, and uses Ginsparg-Wilson fermions of the overlap (Neuberger) variety, together with an auxiliary fermion (plus superpartners), such that a lattice version of U(1)_R symmetry is exactly preserved in the limit of vanishing bare mass. We show that the almost naive supercurrent is conserved at one loop. By contrast we find that this is not true for Wilson fermions and a canonical scalar action. We provide nonperturbative evidence for the nonconservation of the supercurrent in Monte Carlo simulations.Comment: 19 pages, 5 figure

    Design and fabrication of prototype system for early warning of impending bearing failure

    Get PDF
    A test program was conducted with the objective of developing a method and equipment for on-line monitoring of installed ball bearings to detect deterioration or impending failure of the bearings. The program was directed at the spin-axis bearings of a control moment gyro. The bearings were tested at speeds of 6000 and 8000 rpm, thrust loads from 50 to 1000 pounds, with a wide range of lubrication conditions, with and without a simulated fatigue spall implanted in the inner race ball track. It was concluded that a bearing monitor system based on detection and analysis of modulations of a fault indicating bearing resonance frequency can provide a low threshold of sensitivity

    Characterization of the 4-canonical birationality of algebraic threefolds

    Full text link
    In this article we present a 3-dimensional analogue of a well-known theorem of E. Bombieri (in 1973) which characterizes the bi-canonical birationality of surfaces of general type. Let XX be a projective minimal 3-fold of general type with Q\mathbb{Q}-factorial terminal singularities and the geometric genus pg(X)5p_g(X)\ge 5. We show that the 4-canonical map ϕ4\phi_4 is {\it not} birational onto its image if and only if XX is birationally fibred by a family C\mathscr{C} of irreducible curves of geometric genus 2 with KXC0=1K_X\cdot C_0=1 where C0C_0 is a general irreducible member in C\mathscr{C}.Comment: 25 pages, to appear in Mathematische Zeitschrif

    Infraparticle Scattering States in Non-Relativistic QED: II. Mass Shell Properties

    Full text link
    We study the infrared problem in the usual model of QED with non-relativistic matter. We prove spectral and regularity properties characterizing the mass shell of an electron and one-electron infraparticle states of this model. Our results are crucial for the construction of infraparticle scattering states, which are treated in a separate paper.Comment: AMS Latex, 45 pages, 2 figure

    Low frequency electrical noise across contacts between a normal conductor and superconducting bulk YBa2Cu3O7

    Get PDF
    Virtually every device that makes use of the new ceramic superconductors will need normal conductor to supercondutor contacts. The current-voltage and electrical noise characteristics of these contacts could be become important design considerations. I-V and low frequency electrical noise measurements are presented on contacts between a normal conductor and superconducting polycrystalline YBa2Cu3O7. The contacts were formed by first sputtering gold palladium pads onto the surface of the bulk superconductor and then using silver epoxy to attach a wire(s) to each pad. Voltage across the contacts was found for small current densities. The voltage spectral density, S sub v(f), a quanity often used to characterize electrical noise, very closely followed an empirical relationship given by, S sub v(f) = C(VR)sq/f, where V is the DC voltage across the contact, R is the contact resistance, F is frequency, and C is a contant found to be 2 x 10(exp -10)/Omega sq at 78 K. This relationship was found to be independent of contact area, contact geometry, sample fabrication technique, and sample density
    corecore