2,046 research outputs found
A Tight-Binding Investigation of the NaxCoO2 Fermi Surface
We perform an orthogonal basis tight binding fit to an LAPW calculation of
paramagnetic NaCoO for several dopings. The optimal position of the
apical oxygen at each doping is resolved, revealing a non-trivial dependence of
the band structure and Fermi surface on oxygen height. We find that the small
e hole pockets are preserved throughout all investigated dopings and
discuss some possible reasons for the lack of experimental evidence for these
Fermi sheets
Tight-binding Hamiltonian for LaOFeAs
First-principles electronic structure calculations have been very useful in
understanding some of the properties of the new iron-based superconductors.
Further explorations of the role of the individual atomic orbitals in
explaining various aspects of research in these materials, including
experimental work, would benefit from the availability of a tight-binding(TB)
Hamiltonian that reproduces accurately the first-principles band structure
results. In this work we have used the NRL-TB method to construct a TB
Hamiltonian from Linearized Augmented Plane Wave(LAPW) results. Our TB model
includes the Fe d-orbitals, and the p-orbitals from both As and O for the
prototype material LaOFeAs. The resulting TB band structure agrees well with
that of the LAPW calculations in from 2.7 eV below to 0.8 eV above the Fermi
level, epsilon_F, and the Fermi surface matches perfectly to that of the LAPW.
The TB densities of states(DOS) are also in very good agreement with those from
the LAPW in the above energy range, including the per orbital decomposition. We
use our results to provide insights on the existence of a pseudogap in the DOS
just above the Fermi level. We have also performed a separate TB fit to a
database of LAPW results as a function of volume and with variations of the As
positions. This fit although less accurate regarding the band structure near
epsilon_F, reproduces the LAPW total energies very well and has transferability
to non-fitted energies.Comment: 6 pages, 7 figure
Tight-binding study of structure and vibrations of amorphous silicon
We present a tight-binding calculation that, for the first time, accurately
describes the structural, vibrational and elastic properties of amorphous
silicon. We compute the interatomic force constants and find an unphysical
feature of the Stillinger-Weber empirical potential that correlates with a much
noted error in the radial distribution function associated with that potential.
We also find that the intrinsic first peak of the radial distribution function
is asymmetric, contrary to usual assumptions made in the analysis of
diffraction data. We use our results for the normal mode frequencies and
polarization vectors to obtain the zero-point broadening effect on the radial
distribution function, enabling us to directly compare theory and a high
resolution x-ray diffraction experiment
Precise Tight-binding Description of the Band Structure of MgB2
We present a careful recasting of first-principles band structure
calculations for MgB2 in a non-orthogonal sp-tight-binding (TB) basis. Our TB
results almost exactly reproduce our full potential linearized augmented plane
wave results for the energy bands, the densities of states and the total
energies. Our procedure generates transferable Slater-Koster parameters which
should be useful for other studies of this important material.Comment: REVTEX, 2 Encapsulated PostScript Figure
Origin of Superconductivity in Boron-doped Diamond
Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is
investigated exploiting its electronic and vibrational analogies to MgB2. The
deformation potential of the hole states arising from the C-C bond stretch mode
is 60% larger than the corresponding quantity in MgB2 that drives its high Tc,
leading to very large electron-phonon matrix elements. The calculated coupling
strength \lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon
coupling the likely mechanism. Higher doping should increase T_c somewhat, but
effects of three dimensionality primarily on the density of states keep doped
diamond from having a T_c closer to that of MgB2.Comment: Four pages with two embedded figures, corrected fig1. (To appear in
Physical Review Letters(2004)
Metallic properties of magnesium point contacts
We present an experimental and theoretical study of the conductance and
stability of Mg atomic-sized contacts. Using Mechanically Controllable Break
Junctions (MCBJ), we have observed that the room temperature conductance
histograms exhibit a series of peaks, which suggests the existence of a shell
effect. Its periodicity, however, cannot be simply explained in terms of either
an atomic or electronic shell effect. We have also found that at room
temperature, contacts of the diameter of a single atom are absent. A possible
interpretation could be the occurrence of a metal-to-insulator transition as
the contact radius is reduced, in analogy with what it is known in the context
of Mg clusters. However, our first principle calculations show that while an
infinite linear chain can be insulating, Mg wires with larger atomic
coordinations, as in realistic atomic contacts, are alwaysmetallic. Finally, at
liquid helium temperature our measurements show that the conductance histogram
is dominated by a pronounced peak at the quantum of conductance. This is in
good agreement with our calculations based on a tight-binding model that
indicate that the conductance of a Mg one-atom contact is dominated by a single
fully open conduction channel.Comment: 14 pages, 5 figure
Pressure Dependence of the Elastic Moduli in Aluminum Rich Al-Li Compounds
I have carried out numerical first principles calculations of the pressure
dependence of the elastic moduli for several ordered structures in the
Aluminum-Lithium system, specifically FCC Al, FCC and BCC Li, L1_2 Al_3Li, and
an ordered FCC Al_7Li supercell. The calculations were performed using the full
potential linear augmented plane wave method (LAPW) to calculate the total
energy as a function of strain, after which the data was fit to a polynomial
function of the strain to determine the modulus. A procedure for estimating the
errors in this process is also given. The predicted equilibrium lattice
parameters are slightly smaller than found experimentally, consistent with
other LDA calculations. The computed elastic moduli are within approximately
10% of the experimentally measured moduli, provided the calculations are
carried out at the experimental lattice constant. The LDA equilibrium shear
modulus C11-C12 increases from 59.3 GPa in Al, to 76.0 GPa in Al_7Li, to 106.2
GPa in Al_3Li. The modulus C_44 increases from 38.4 GPa in Al to 46.1 GPa in
Al_7Li, then falls to 40.7 GPa in Al_3Li. All of the calculated elastic moduli
increase with pressure with the exception of BCC Li, which becomes elastically
unstable at about 2 GPa, where C_11-C_12 vanishes.Comment: 17 pages (REVTEX) + 7 postscript figure
- …
