36,254 research outputs found

    Chemical signatures of planets: beyond solar-twins

    Get PDF
    Elemental abundance studies of solar twin stars suggest that the solar chemical composition contains signatures of the formation of terrestrial planets in the solar system, namely small but significant depletions of the refractory elements. To test this hypothesis, we study stars which, compared to solar twins, have less massive convective envelopes (therefore increasing the amplitude of the predicted effect) or are, arguably, more likely to host planets (thus increasing the frequency of signature detections). We measure relative atmospheric parameters and elemental abundances of a late-F type dwarf sample (52 stars) and a sample of metal-rich solar analogs (59 stars). We detect refractory-element depletions with amplitudes up to about 0.15 dex. The distribution of depletion amplitudes for stars known to host gas giant planets is not different from that of the rest of stars. The maximum amplitude of depletion increases with effective temperature from 5650 K to 5950 K, while it appears to be constant for warmer stars (up to 6300 K). The depletions observed in solar twin stars have a maximum amplitude that is very similar to that seen here for both of our samples. Gas giant planet formation alone cannot explain the observed distributions of refractory-element depletions, leaving the formation of rocky material as a more likely explanation of our observations. More rocky material is necessary to explain the data of solar twins than metal-rich stars, and less for warm stars. However, the sizes of the stars' convective envelopes at the time of planet formation could be regulating these amplitudes. Our results could be explained if disk lifetimes were shorter in more massive stars, as independent observations indeed seem to suggest.Comment: Astronomy and Astrophysics, in press. Full tables available in the source downloa

    Stellar Chemical Abundances: In Pursuit of the Highest Achievable Precision

    Get PDF
    The achievable level of precision on photospheric abundances of stars is a major limiting factor on investigations of exoplanet host star characteristics, the chemical histories of star clusters, and the evolution of the Milky Way and other galaxies. While model-induced errors can be minimized through the differential analysis of spectrally similar stars, the maximum achievable precision of this technique has been debated. As a test, we derive differential abundances of 19 elements from high-quality asteroid-reflected solar spectra taken using a variety of instruments and conditions. We treat the solar spectra as being from unknown stars and use the resulting differential abundances, which are expected to be zero, as a diagnostic of the error in our measurements. Our results indicate that the relative resolution of the target and reference spectra is a major consideration, with use of different instruments to obtain the two spectra leading to errors up to 0.04 dex. Use of the same instrument at different epochs for the two spectra has a much smaller effect (~0.007 dex). The asteroid used to obtain the solar standard also has a negligible effect (~0.006 dex). Assuming that systematic errors from the stellar model atmospheres have been minimized, as in the case of solar twins, we confirm that differential chemical abundances can be obtained at sub-0.01 dex precision with due care in the observations, data reduction and abundance analysis.Comment: Accepted for publication in ApJ; 13 pages, 6 figures, 7 table

    Search for the Higgs Boson H20H_2^0 at LHC in 3-3-1 Model

    Full text link
    We present an analysis of production and signature of neutral Higgs boson (H20H_{2}^{0}) on the version of the 3-3-1 model containing heavy leptons at the Large Hadron Collider. We studied the possibility to identify it using the respective branching ratios. Cross section are given for the collider energy, s=\sqrt{s} = 14 TeV. Event rates and significances are discussed for two possible values of integrated luminosity, 300 fb1^{-1} and 3000 fb1^{-1}.Comment: 17 pages 7 figures. arXiv admin note: substantial text overlap with arXiv:1205.404

    Events in the life of a cocoon surrounding a light, collapsar jet

    Full text link
    According to the collapsar model, gamma-ray bursts are thought to be produced in shocks that occur after the relativistic jet has broken free from the stellar envelope. If the mass density of the collimated outflow is less than that of the stellar envelope, the jet will then be surrounded by a cocoon of relativistic plasma. This material would itself be able to escape along the direction of least resistance, which is likely to be the rotation axis of the stellar progenitor, and accelerate in approximately the same way as an impulsive fireball. We discuss how the properties of the stellar envelope have a decisive effect on the appearance of a cocoon propagating through it. The relativistic material that accumulated in the cocoon would have enough kinetic energy to substantially alter the structure of the relativistic outflow, if not in fact provide much of the observed explosive power. Shock waves within this plasma can produce gamma-ray and X-ray transients, in addition to the standard afterglow emission that would arise from the deceleration shock of the cocoon fireball.Comment: 16 pages, 5 figures, slightly revised version, accepted for publication in MNRA

    High-precision laser spectroscopy of the CO A1Π^1\Pi - X1Σ+^1\Sigma^+ (2,0), (3,0) and (4,0) bands

    Full text link
    High-precision two-photon Doppler-free frequency measurements have been performed on the CO A1Π^1\Pi - X1Σ+^1\Sigma^+ fourth-positive system (2,0), (3,0), and (4,0) bands. Absolute frequencies of forty-three transitions, for rotational quantum numbers up to J=5J = 5, have been determined at an accuracy of 1.6×1031.6\times10^{-3} cm1^{-1}, using advanced techniques of two-color 2+1' resonance-enhanced multi-photon ionization, Sagnac interferometry, frequency-chirp analysis on the laser pulses, and correction for AC-Stark shifts. The accurate transition frequencies of the CO A1Π^1\Pi - X1Σ+^1\Sigma^+ system are of relevance for comparison with astronomical data in the search for possible drifts of fundamental constants in the early universe. The present accuracies in laboratory wavelengths of Δλ/λ=2×108\Delta\lambda/\lambda = 2 \times 10^{-8} may be considered exact for the purpose of such comparisons.Comment: 13 pages, 6 figures, The Journal of Chemical Physics (2015) accepte

    A possible signature of terrestrial planet formation in the chemical composition of solar analogs

    Full text link
    Recent studies have shown that the elemental abundances in the Sun are anomalous when compared to most (about 85%) nearby solar twin stars. Compared to its twins, the Sun exhibits a deficiency of refractory elements (those with condensation temperatures Tc>900K) relative to volatiles (Tc<900K). This finding is speculated to be a signature of the planet formation that occurred more efficiently around the Sun compared with the majority of solar twins. Furthermore, within this scenario, it seems more likely that the abundance patterns found are specifically related to the formation of terrestrial planets. In this work we analyze abundance results from six large independent stellar abundance surveys to determine whether they confirm or reject this observational finding. We show that the elemental abundances derived for solar analogs in these six studies are consistent with the Tc trend suggested as a planet formation signature. The same conclusion is reached when those results are averaged heterogeneously. We also investigate the dependency of the abundances with first ionization potential (FIP), which correlates well with Tc. A trend with FIP would suggest a different origin for the abundance patterns found, but we show that the correlation with Tc is statistically more significant. We encourage similar investigations of metal-rich solar analogs and late F-type dwarf stars, for which the hypothesis of a planet formation signature in the elemental abundances makes very specific predictions. Finally, we examine a recent paper that claims that the abundance patterns of two stars hosting super-Earth like planets contradict the planet formation signature hypothesis. Instead, we find that the chemical compositions of these two stars are fully compatible with our hypothesis.Comment: To appear in Astronomy and Astrophysic
    corecore