442 research outputs found
The Eurace@Unibi Model: An Agent-Based Macroeconomic Model for Economic Policy Analysis
Dawid H, Gemkow S, Harting P, van der Hoog S, Neugart M. The Eurace@Unibi Model: An Agent-Based Macroeconomic Model for Economic Policy Analysis. Working Papers in Economics and Management. Vol 05-2012. Bielefeld: Bielefeld University, Department of Business Administration and Economics; 2012.This document provides a description of the modeling assumptions and economic features
of the Eurace@Unibi model. Furthermore, the document shows typical patterns of
the output generated by this model and compares it to empirically observable stylized facts.
The Eurace@Unibi model provides a representation of a closed macroeconomic model with
spatial structure. The main objective is to provide a micro-founded macroeconomic model
that can be used as a unified framework for policy analysis in different economic policy areas
and for the examination of generic macroeconomic research questions. In spite of this general
agenda the model has been constructed with certain specific research questions in mind and
therefore certain parts of the model, e.g. the mechanisms driving technological change, have
been worked out in more detail than others.
The purpose of this document is to give an overview over the model itself and its features
rather than discussing how insights into particular economic issues can be obtained using the
Eurace@Unibi model. The model has been designed as a framework for economic analysis in
various domains of economics. A number of economic issues have been examined using (prior
versions of) the model (see Dawid et al. (2008), Dawid et al. (2009), Dawid et al. (2011a),
Dawid and Harting (2011), van der Hoog and Deissenberg (2011), Cincotti et al. (2010))
and recent extensions of the model have substantially extended its applicability in various
economic policy domains, however results of such policy analyses will be reported elsewhere.
Whereas the overall modeling approach, the different modeling choices and the economic
rationale behind these choices is discussed in some detail in this document, no detailed
description of the implementation is given. Such a detailed documentation is provided in the
accompanying document Dawid et al. (2011b)
3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell
The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes
Proposed nomenclature for Pseudallescheria, Scedosporium and related genera
As a result of fundamental changes in the International Code of Nomenclature on the use of separate names for sexual and asexual stages of fungi, generic names of many groups should be reconsidered. Members of the ECMM/ISHAM working group on Pseudallescheria/Scedosporium infections herein advocate a novel nomenclature for genera and species in Pseudallescheria, Scedosporium and allied taxa. The generic names Parascedosporium, Lomentospora, Petriella, Petriellopsis, and Scedosporium are proposed for a lineage within Microascaceae with mostly Scedosporium anamorphs producing slimy, annellidic conidia. Considering that Scedosporium has priority over Pseudallescheria and that Scedosporium prolificans is phylogenetically distinct from the other Scedosporium species, some name changes are proposed. Pseudallescheria minutispora and Petriellidium desertorum are renamed as Scedosporium minutisporum and S. desertorum, respectively. Scedosporium prolificans is renamed as Lomentospora prolificans
Calculated phase diagrams, iron tolerance limits, and corrosion of Mg-Al alloys
The factors determining corrosion are reviewed in this paper, with an emphasis on iron tolerance limit and the production of high-purity castings. To understand the iron impurity tolerance limit, magnesium phase diagrams were calculated using the Pandat software package. Calculated phase diagrams can explain the iron tolerance limit and the production of high-purity castings by means of control of melt conditions; this is significant for the production of quality castings from recycled magnesium. Based on the new insight, the influence of the microstructure on corrosion of magnesium alloys is reviewed
Smaller size packs a stronger punch : recent advances in small antibody fragments targeting tumour-associated carbohydrate antigens
Attached to proteins, lipids, or forming long, complex chains, glycans represent the most versatile post-translational modification in nature and surround all human cells. Unique glycan structures are monitored by the immune system and differentiate self from non-self and healthy from malignant cells. Aberrant glycosylations, termed tumour-associated carbohydrate antigens (TACAs), are a hallmark of cancer and are correlated with all aspects of cancer biology. Therefore, TACAs represent attractive targets for monoclonal antibodies for cancer diagnosis and therapy. However, due to the thick and dense glycocalyx as well as the tumour micro-environment, conventional antibodies often suffer from restricted access and limited effectiveness in vivo. To overcome this issue, many small antibody fragments have come forth, showing similar affinity with better efficiency than their full-length counterparts. Here we review small antibody fragments against specific glycans on tumour cells and highlight their advantages over conventional antibodies
Care seeking and attitudes towards treatment compliance by newly enrolled tuberculosis patients in the district treatment programme in rural western Kenya: a qualitative study
<p>Abstract</p> <p>Background</p> <p>The two issues mostly affecting the success of tuberculosis (TB) control programmes are delay in presentation and non-adherence to treatment. It is important to understand the factors that contribute to these issues, particularly in resource limited settings, where rates of tuberculosis are high. The objective of this study is to assess health-seeking behaviour and health care experiences among persons with pulmonary tuberculosis, and identify the reasons patients might not complete their treatment.</p> <p>Methods</p> <p>We performed qualitative one-on-one in-depth interviews with pulmonary tuberculosis patients in nine health facilities in rural western Kenya. Thirty-one patients, 18 women and 13 men, participated in the study. All reside in an area of western Kenya with a Health and Demographic Surveillance System (HDSS). They had attended treatment for up to 4 weeks on scheduled TB clinic days in September and October 2005.</p> <p>The nine sites all provide diagnostic and treatment services. Eight of the facilities were public (3 hospitals and 5 health centres) and one was a mission health centre.</p> <p>Results</p> <p>Most patients initially self-treated with herbal remedies or drugs purchased from kiosks or pharmacies before seeking professional care. The reported time from initial symptoms to TB diagnosis ranged from 3 weeks to 9 years. Misinterpretation of early symptoms and financial constraints were the most common reasons reported for the delay.</p> <p>We also explored potential reasons that patients might discontinue their treatment before completing it. Reasons included being unaware of the duration of TB treatment, stopping treatment once symptoms subsided, and lack of family support.</p> <p>Conclusions</p> <p>This qualitative study highlighted important challenges to TB control in rural western Kenya, and provided useful information that was further validated in a quantitative study in the same area.</p
Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species
Drivers of genetic diversity in secondary metabolic gene clusters within a fungal speciesFilamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns.National Science Foundation (grant
number DEB-1442113). Received by AR. U.S.
National Library of Medicine training grant (grant
number 2T15LM007450). Received by ALL.
Conselho Nacional de Desenvolvimento Cientı´fico e
573 Tecnológico. Northern Portugal Regional
Operational Programme (grant number NORTE-01-
0145-FEDER-000013). Received by FR. Fundação
de Amparo à Pesquisa do 572 Estado de São
Paulo. Received by GHG. National Institutes of
Health (grant number R01 AI065728-01). Received
by NPK. National Science Foundation (grant
number IOS-1401682). Received by JHW. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.info:eu-repo/semantics/publishedVersio
Ευρετικές προσεγγίσεις του μοναδιάστατου προβλήματος πακετοποίησης
Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data
One fungus, which genes?: development and assessment of universal primers for potential secondary fungal DNA barcodes
The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1-D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial beta-tubulin II (TUB2); iv) gamma-actin (ACT); v) translation elongation factor 1-alpha (TEF1 alpha); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5-6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1 alpha. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1 alpha, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail
Mould Routine Identification in the Clinical Laboratory by Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry
BACKGROUND: MALDI-TOF MS recently emerged as a valuable identification tool for bacteria and yeasts and revolutionized the daily clinical laboratory routine. But it has not been established for routine mould identification. This study aimed to validate a standardized procedure for MALDI-TOF MS-based mould identification in clinical laboratory. MATERIALS AND METHODS: First, pre-extraction and extraction procedures were optimized. With this standardized procedure, a 143 mould strains reference spectra library was built. Then, the mould isolates cultured from sequential clinical samples were prospectively subjected to this MALDI-TOF MS based-identification assay. MALDI-TOF MS-based identification was considered correct if it was concordant with the phenotypic identification; otherwise, the gold standard was DNA sequence comparison-based identification. RESULTS: The optimized procedure comprised a culture on sabouraud-gentamicin-chloramphenicol agar followed by a chemical extraction of the fungal colonies with formic acid and acetonitril. The identification was done using a reference database built with references from at least four culture replicates. For five months, 197 clinical isolates were analyzed; 20 were excluded because they were not identified at the species level. MALDI-TOF MS-based approach correctly identified 87% (154/177) of the isolates analyzed in a routine clinical laboratory activity. It failed in 12% (21/177), whose species were not represented in the reference library. MALDI-TOF MS-based identification was correct in 154 out of the remaining 156 isolates. One Beauveria bassiana was not identified and one Rhizopus oryzae was misidentified as Mucor circinelloides. CONCLUSIONS: This work's seminal finding is that a standardized procedure can also be used for MALDI-TOF MS-based identification of a wide array of clinically relevant mould species. It thus makes it possible to identify moulds in the routine clinical laboratory setting and opens new avenues for the development of an integrated MALDI-TOF MS-based solution for the identification of any clinically relevant microorganism
- …
