3,760 research outputs found
First experimental demonstration of temporal hypertelescope operation with a laboratory prototype
In this paper, we report the first experimental demonstration of a Temporal
HyperTelescope (THT). Our breadboard including 8 telescopes is firstly tested
in a manual cophasing configuration on a 1D object. The Point Spread Function
(PSF) is measured and exhibits a dynamics in the range of 300. A quantitative
analysis of the potential biases demonstrates that this limitation is related
to the residual phase fluctuation on each interferometric arm. Secondly, an
unbalanced binary star is imaged demonstrating the imaging capability of THT.
In addition, 2D PSF is recorded even if the telescope array is not optimized
for this purpose.Comment: Accepted for publication in MNRAS. 11 pages, 25 figure
The First Detections of the Extragalactic Background Light at 3000, 5500, and 8000A (III): Cosmological Implications
(Abridged) We have used HST WFPC2 and ground-based spectroscopy to measure
the integrated extragalactic background light (EBL) at optical wavelengths. We
have also computed the integrated light from individual galaxy counts in the
images used to measure the EBL and in the Hubble Deep Field. We find that the
flux in galaxies as measured by standard galaxy photometry methods has
generally been underestimated by about 50%. Further, we find that the total
flux in individually detected galaxies is a factor of 2 to 3 less than the EBL
at 3000--8000A. We show that a significant fraction of the EBL may come from
normal galaxies at z<4, which are simply undetectable as a result of
K-corrections and cosmological surface brightness dimming. This is consistent
with recent redshift surveys at z<4. In the context of some simple models, we
discuss the constraints placed by the EBL on the evolution of the luminosity
density at z>1. Based on our optical EBL and published UV and IR EBL
measurements, we estimate that the total EBL from 0.1--1000 microns is 100+/-20
nW/m^2/sr. If the total EBL were produced entirely by stellar nucleosynthesis,
then we estimate that the total baryonic mass processed through stars is
Omega_* = 0.0062 (+/- 0.0022) h^{-2}, which corresponds to 0.33+/-0.12 Omega_B
for currently favored values of the baryon density. This estimate is smaller by
roughly 7% if 7 h_{0.7} nW/m^2/sr of the total EBL comes from accretion onto
central black holes. This estimate of Omega_* suggests that the universe has
been enriched to a total metal mass of 0.21(+/-0.13) Z_sun Omega_B. Our
estimate is consistent with other measurements of the cumulative metal mass
fraction of stars, stellar remnants, and the intracluster medium of galaxy
clusters in the local universe.Comment: Accepted for publication in ApJ, 20 pages using emulateapj.sty,
version with higher resolution figures available at
http://www.astro.lsa.umich.edu/~rab/publications.html or at
http://nedwww.ipac.caltech.edu/level5/Sept01/Bernstein3/frames.htm
Cosmic Histories of Stars, Gas, Heavy Elements, and Dust
We present a set of coupled equations that relate the stellar, gaseous,
chemical, and radiation constituents of the universe averaged over the whole
galaxy population. Using as input the available data from quasar
absorption-line surveys, optical imaging and redshift surveys, and the COBE
DIRBE and FIRAS extragalactic infrared background measurements, we obtain
solutions for the cosmic histories of stars, interstellar gas, heavy elements,
dust, and radiation from stars and dust in galaxies. Our solutions reproduce
remarkably well a wide variety of observations that were not used as input,
including the integrated background light from galaxy counts, the optical and
near-infrared emissivities from galaxy surveys, the local infrared emissivities
from the IRAS survey, the mean abundance of heavy elements from surveys of
damped Lyman-alpha systems, and the global star formation rates from H
surveys and submillimeter observations. The solutions presented here suggest
that the process of galaxy formation appears to have undergone an early period
of substantial inflow to assemble interstellar gas at , a subsequent
period of intense star formation and chemical enrichment at , and a recent period of rapid decline in the gas content, star
formation rate, optical stellar emissivity, and infrared dust emission at
. [abridged version]Comment: 29 pages, ApJ in press, 10 Sept 9
Taxon-specific responses of Southern Ocean diatoms to Fe enrichment revealed by synchrotron radiation FTIR microspectroscopy
© 2014 Author(s). Photosynthesis by marine diatoms contributes substantially to global biogeochemical cycling and ecosystem productivity. It is widely accepted that diatoms are extremely sensitive to changes in Fe availability, with numerous in situ experiments demonstrating rapid growth and increased export of elements (e.g. C, Si and Fe) from surface waters as a result of Fe addition. Less is known about the effects of Fe enrichment on the phenotypes of diatoms, such as associated changes in nutritional value-furthermore, data on taxon-specific responses are almost non-existent. Enhanced supply of nutrient-rich waters along the coast of the subantarctic Kerguelen Island provide a valuable opportunity to examine the responses of phytoplankton to natural Fe enrichment. Here we demonstrate the use of synchrotron radiation Fourier Transform Infrared (SR-FTIR) microspectroscopy to analyse changes in the macromolecular composition of diatoms collected along the coast and plateau of Kerguelen Island, Southern Ocean. SR-FTIR microspectroscopy enabled the analysis of individual diatom cells from mixed communities of field-collected samples, thereby providing insight into in situ taxon-specific responses in relation to changes in Fe availability. Phenotypic responses were taxon-specific in terms of intraspecific variability and changes in proteins, amino acids, phosphorylated molecules, silicate/silicic acid and carbohydrates. In contrast to some previous studies, silicate/silicic acid levels increased under Fe enrichment, in conjunction with increases in carbohydrate stores. The highly abundant taxon Fragilariopsis kerguelensis displayed a higher level of phenotypic plasticity than Pseudo-nitzschia spp., while analysis of the data pooled across all measured taxa showed different patterns in macromolecular composition compared to those for individual taxon. This study demonstrates that taxon-specific responses to Fe enrichment may not always be accurately reflected by bulk community measurements, highlighting the need for further research into taxon-specific phenotypic responses of phytoplankton to environmental change
Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes
Current lithium batteries operate on inorganic insertion compounds to power a diverse range of
applications, but recently there is a surging demand to develop environmentally friendly green electrode
materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion
storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic
and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as
redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The
mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The
formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin
and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl
group at C-2 position remains unaltered
Recommended from our members
Thermal H<sub>2</sub>O emission from the Herbig-Haro flow HH 54
The first detection of thermal water emission from a Herbig-Haro object is presented. The observations were performed with the LWS (Long Wavelength Spectrograph) aboard ISO (Infrared Space Observatory). Besides H2O, rotational lines of CO are present in the spectrum of HH 54. These high-J CO lines are used to derive the physical model parameters of the FIR (far-infrared) molecular line emitting regions. This model fits simultaneously the observed OH and H2O spectra for an OH abundance X(OH)=10-6 and a water vapour abundance X(H2O)=10-5.
At a distance of 250pc, the total CO, OH and H2O rotational line cooling rate is estimated to be 1.3x10-2 L⊙, which is comparable to the mechanical luminosity generated by the 10km s-1 shocks, suggesting that practically all of the cooling of the weak-shock regions is done by these three molecular species alone
Recommended from our members
Detection of [O I] 63 <i>μ</i>m in absorption toward Sgr B2
A high signal-to-noise 52-90 μm spectrum is presented for the central part of the Sagittarius B2 complex. The data were obtained with the Long Wavelength Spectrometer on board the Infrared Space Observatory (ISO). The [O I] 63 μm line is detected in absorption even at the grating spectral resolution of 0.29 μm. A lower limit for the column density of atomic oxygen of the order of 1019 cm-2 is derived. This implies that more than 40% of the interstellar oxygen must be in atomic form along the line of sight toward the Sgr B2 molecular cloud
Holographic Formulation of Quantum Supergravity
We show that supergravity with a cosmological constant can be
expressed as constrained topological field theory based on the supergroup
. The theory is then extended to include timelike boundaries with
finite spatial area. Consistent boundary conditions are found which induce a
boundary theory based on a supersymmetric Chern-Simons theory. The boundary
state space is constructed from states of the boundary supersymmetric
Chern-Simons theory on the punctured two sphere and naturally satisfies the
Bekenstein bound, where area is measured by the area operator of quantum
supergravity.Comment: 30 pages, no figur
- …
