3,760 research outputs found

    First experimental demonstration of temporal hypertelescope operation with a laboratory prototype

    Full text link
    In this paper, we report the first experimental demonstration of a Temporal HyperTelescope (THT). Our breadboard including 8 telescopes is firstly tested in a manual cophasing configuration on a 1D object. The Point Spread Function (PSF) is measured and exhibits a dynamics in the range of 300. A quantitative analysis of the potential biases demonstrates that this limitation is related to the residual phase fluctuation on each interferometric arm. Secondly, an unbalanced binary star is imaged demonstrating the imaging capability of THT. In addition, 2D PSF is recorded even if the telescope array is not optimized for this purpose.Comment: Accepted for publication in MNRAS. 11 pages, 25 figure

    The First Detections of the Extragalactic Background Light at 3000, 5500, and 8000A (III): Cosmological Implications

    Get PDF
    (Abridged) We have used HST WFPC2 and ground-based spectroscopy to measure the integrated extragalactic background light (EBL) at optical wavelengths. We have also computed the integrated light from individual galaxy counts in the images used to measure the EBL and in the Hubble Deep Field. We find that the flux in galaxies as measured by standard galaxy photometry methods has generally been underestimated by about 50%. Further, we find that the total flux in individually detected galaxies is a factor of 2 to 3 less than the EBL at 3000--8000A. We show that a significant fraction of the EBL may come from normal galaxies at z<4, which are simply undetectable as a result of K-corrections and cosmological surface brightness dimming. This is consistent with recent redshift surveys at z<4. In the context of some simple models, we discuss the constraints placed by the EBL on the evolution of the luminosity density at z>1. Based on our optical EBL and published UV and IR EBL measurements, we estimate that the total EBL from 0.1--1000 microns is 100+/-20 nW/m^2/sr. If the total EBL were produced entirely by stellar nucleosynthesis, then we estimate that the total baryonic mass processed through stars is Omega_* = 0.0062 (+/- 0.0022) h^{-2}, which corresponds to 0.33+/-0.12 Omega_B for currently favored values of the baryon density. This estimate is smaller by roughly 7% if 7 h_{0.7} nW/m^2/sr of the total EBL comes from accretion onto central black holes. This estimate of Omega_* suggests that the universe has been enriched to a total metal mass of 0.21(+/-0.13) Z_sun Omega_B. Our estimate is consistent with other measurements of the cumulative metal mass fraction of stars, stellar remnants, and the intracluster medium of galaxy clusters in the local universe.Comment: Accepted for publication in ApJ, 20 pages using emulateapj.sty, version with higher resolution figures available at http://www.astro.lsa.umich.edu/~rab/publications.html or at http://nedwww.ipac.caltech.edu/level5/Sept01/Bernstein3/frames.htm

    Cosmic Histories of Stars, Gas, Heavy Elements, and Dust

    Get PDF
    We present a set of coupled equations that relate the stellar, gaseous, chemical, and radiation constituents of the universe averaged over the whole galaxy population. Using as input the available data from quasar absorption-line surveys, optical imaging and redshift surveys, and the COBE DIRBE and FIRAS extragalactic infrared background measurements, we obtain solutions for the cosmic histories of stars, interstellar gas, heavy elements, dust, and radiation from stars and dust in galaxies. Our solutions reproduce remarkably well a wide variety of observations that were not used as input, including the integrated background light from galaxy counts, the optical and near-infrared emissivities from galaxy surveys, the local infrared emissivities from the IRAS survey, the mean abundance of heavy elements from surveys of damped Lyman-alpha systems, and the global star formation rates from Hα\alpha surveys and submillimeter observations. The solutions presented here suggest that the process of galaxy formation appears to have undergone an early period of substantial inflow to assemble interstellar gas at z3z\gtrsim3, a subsequent period of intense star formation and chemical enrichment at 1z31\lesssim z\lesssim3, and a recent period of rapid decline in the gas content, star formation rate, optical stellar emissivity, and infrared dust emission at z1z\lesssim1. [abridged version]Comment: 29 pages, ApJ in press, 10 Sept 9

    Taxon-specific responses of Southern Ocean diatoms to Fe enrichment revealed by synchrotron radiation FTIR microspectroscopy

    Get PDF
    © 2014 Author(s). Photosynthesis by marine diatoms contributes substantially to global biogeochemical cycling and ecosystem productivity. It is widely accepted that diatoms are extremely sensitive to changes in Fe availability, with numerous in situ experiments demonstrating rapid growth and increased export of elements (e.g. C, Si and Fe) from surface waters as a result of Fe addition. Less is known about the effects of Fe enrichment on the phenotypes of diatoms, such as associated changes in nutritional value-furthermore, data on taxon-specific responses are almost non-existent. Enhanced supply of nutrient-rich waters along the coast of the subantarctic Kerguelen Island provide a valuable opportunity to examine the responses of phytoplankton to natural Fe enrichment. Here we demonstrate the use of synchrotron radiation Fourier Transform Infrared (SR-FTIR) microspectroscopy to analyse changes in the macromolecular composition of diatoms collected along the coast and plateau of Kerguelen Island, Southern Ocean. SR-FTIR microspectroscopy enabled the analysis of individual diatom cells from mixed communities of field-collected samples, thereby providing insight into in situ taxon-specific responses in relation to changes in Fe availability. Phenotypic responses were taxon-specific in terms of intraspecific variability and changes in proteins, amino acids, phosphorylated molecules, silicate/silicic acid and carbohydrates. In contrast to some previous studies, silicate/silicic acid levels increased under Fe enrichment, in conjunction with increases in carbohydrate stores. The highly abundant taxon Fragilariopsis kerguelensis displayed a higher level of phenotypic plasticity than Pseudo-nitzschia spp., while analysis of the data pooled across all measured taxa showed different patterns in macromolecular composition compared to those for individual taxon. This study demonstrates that taxon-specific responses to Fe enrichment may not always be accurately reflected by bulk community measurements, highlighting the need for further research into taxon-specific phenotypic responses of phytoplankton to environmental change

    Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

    Get PDF
    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered

    Holographic Formulation of Quantum Supergravity

    Get PDF
    We show that N=1{\cal N}=1 supergravity with a cosmological constant can be expressed as constrained topological field theory based on the supergroup Osp(14)Osp(1|4). The theory is then extended to include timelike boundaries with finite spatial area. Consistent boundary conditions are found which induce a boundary theory based on a supersymmetric Chern-Simons theory. The boundary state space is constructed from states of the boundary supersymmetric Chern-Simons theory on the punctured two sphere and naturally satisfies the Bekenstein bound, where area is measured by the area operator of quantum supergravity.Comment: 30 pages, no figur
    corecore