1,260 research outputs found
Relaxation kinetics in two-dimensional structures
We have studied the approach to equilibrium of islands and pores in two
dimensions. The two-regime scenario observed when islands evolve according to a
set of particular rules, namely relaxation by steps at low temperature and
smooth at high temperature, is generalized to a wide class of kinetic models
and the two kinds of structures. Scaling laws for equilibration times are
analytically derived and confirmed by kinetic Monte Carlo simulations.Comment: 6 pages, 7 figures, 1 tabl
Low temperature shape relaxation of 2-d islands by edge diffusion
We present a precise microscopic description of the limiting step for low
temperature shape relaxation of two dimensional islands in which activated
diffusion of particles along the boundary is the only mechanism of transport
allowed. In particular, we are able to explain why the system is driven
irreversibly towards equilibrium. Based on this description, we present a
scheme for calculating the duration of the limiting step at each stage of the
relaxation process. Finally, we calculate numerically the total relaxation time
as predicted by our results and compare it with simulations of the relaxation
process.Comment: 11 pages, 5 figures, to appear in Phys. Rev.
The contamination of the surface of Vesta by impacts and the delivery of the dark material
The Dawn spacecraft observed the presence of dark material, which in turn
proved to be associated with OH and H-rich material, on the surface of Vesta.
The source of this dark material has been identified with the low albedo
asteroids, but it is still a matter of debate whether the delivery of the dark
material is associated with a few large impact events, to micrometeorites or to
the continuous, secular flux of impactors on Vesta. The continuous flux
scenario predicts that a significant fraction of the exogenous material
accreted by Vesta should be due to non-dark impactors likely analogous to
ordinary chondrites, which instead represent only a minor contaminant in the
HED meteorites. We explored the continuous flux scenario and its implications
for the composition of the vestan regolith, taking advantage of the data from
the Dawn mission and the HED meteorites. We used our model to show that the
stochastic events scenario and the micrometeoritic flux scenario are natural
consequences of the continuous flux scenario. We then used the model to
estimate the amounts of dark and hydroxylate materials delivered on Vesta since
the LHB and we showed how our results match well with the values estimated by
the Dawn mission. We used our model to assess the amount of Fe and siderophile
elements that the continuous flux of impactors would mix in the vestan
regolith: concerning the siderophile elements, we focused our attention on the
role of Ni. The results are in agreement with the data available on the Fe and
Ni content of the HED meteorites and can be used as a reference frame in future
studies of the data from the Dawn mission and of the HED meteorites. Our model
cannot yet provide an answer to the fate of the missing non-carbonaceous
contaminants, but we discuss possible reasons for this discrepancy.Comment: 31 pages, 7 figures, 4 tables. Accepted for publication on the
journal ICARUS, "Dark and Bright Materials on Vesta" special issu
Sensitivity of the stress response function to packing preparation
A granular assembly composed of a collection of identical grains may pack
under different microscopic configurations with microscopic features that are
sensitive to the preparation history. A given configuration may also change in
response to external actions such as compression, shearing etc. We show using a
mechanical response function method developed experimentally and numerically,
that the macroscopic stress profiles are strongly dependent on these
preparation procedures. These results were obtained for both two and three
dimensions. The method reveals that, under a given preparation history, the
macroscopic symmetries of the granular material is affected and in most cases
significant departures from isotropy should be observed. This suggests a new
path toward a non-intrusive test of granular material constitutive properties.Comment: 15 pages, 11 figures, some numerical data corrected, to appear in J.
Phys. Cond. Mat. special issue on Granular Materials (M. Nicodemi Editor
Diffusion of gold nanoclusters on graphite
We present a detailed molecular-dynamics study of the diffusion and
coalescence of large (249-atom) gold clusters on graphite surfaces. The
diffusivity of monoclusters is found to be comparable to that for single
adatoms. Likewise, and even more important, cluster dimers are also found to
diffuse at a rate which is comparable to that for adatoms and monoclusters. As
a consequence, large islands formed by cluster aggregation are also expected to
be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling
law for the dependence on size of the diffusivity of large clusters, we find
that islands consisting of as many as 100 monoclusters should exhibit
significant mobility. This result has profound implications for the morphology
of cluster-assembled materials
Internal states of model isotropic granular packings. I. Assembling process, geometry and contact networks
This is the first paper of a series of three, reporting on numerical
simulation studies of geometric and mechanical properties of static assemblies
of spherical beads under an isotropic pressure. Frictionless systems assemble
in the unique random close packing (RCP) state in the low pressure limit if the
compression process is fast enough, slower processes inducing traces of
crystallization, and exhibit specific properties directly related to
isostaticity of the force-carrying structure. The different structures of
frictional packings assembled by various methods cannot be classified by the
sole density. While lubricated systems approach RCP densities and coordination
number z^*~=6 on the backbone in the rigid limit, an idealized "vibration"
procedure results in equally dense configurations with z^*~=4.5. Near neighbor
correlations on various scales are computed and compared to available
laboratory data, although z^* values remain experimentally inaccessible. Low
coordination packings have many rattlers (more than 10% of the grains carry no
force), which should be accounted for on studying position correlations, and a
small proportion of harmless "floppy modes" associated with divalent grains.
Frictional packings, however slowly assembled under low pressure, retain a
finite level of force indeterminacy, except in the limit of infinite friction.Comment: 29 pages. Published in Physical Review
Strain versus stress in a model granular material: a Devil's staircase
The series of equilibrium states reached by disordered packings of rigid,
frictionless discs in two dimensions, under gradually varying stress, are
studied by numerical simulations. Statistical properties of trajectories in
configuration space are found to be independent of specific assumptions ruling
granular dynamics, and determined by geometry only. A monotonic increase in
some macroscopic loading parameter causes a discrete sequence of
rearrangements. For a biaxial compression, we show that, due to the statistical
importance of such events of large magnitudes, the dependence of the resulting
strain on stress direction is a Levy flight in the thermodynamic limit.Comment: REVTeX, 4 pages, 5 included PostScript figures. New version altered
throughout text, very close to published pape
A contiuum model for low temperature relaxation of crystal steps
High and low temperature relaxation of crystal steps are described in a
unified picture, using a continuum model based on a modified expression of the
step free energy. Results are in agreement with experiments and Monte Carlo
simulations of step fluctuations and monolayer cluster diffusion and
relaxation. In an extended model where mass exchange with neighboring terraces
is allowed, step transparency and a low temperature regime for unstable step
meandering are found.Comment: Submitted to Phys.Rev.Let
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
Changing shapes in the nanoworld
What are the mechanisms leading to the shape relaxation of three dimensional
crystallites ? Kinetic Monte Carlo simulations of fcc clusters show that the
usual theories of equilibration, via atomic surface diffusion driven by
curvature, are verified only at high temperatures. Below the roughening
temperature, the relaxation is much slower, kinetics being governed by the
nucleation of a critical germ on a facet. We show that the energy barrier for
this step linearly increases with the size of the crystallite, leading to an
exponential dependence of the relaxation time.Comment: 4 pages, 5 figures. Accepted by Phys Rev Let
- …
