159,207 research outputs found
Formation time distribution of dark matter haloes: theories versus N-body simulations
This paper uses numerical simulations to test the formation time distribution
of dark matter haloes predicted by the analytic excursion set approaches. The
formation time distribution is closely linked to the conditional mass function
and this test is therefore an indirect probe of this distribution. The
excursion set models tested are the extended Press-Schechter (EPS) model, the
ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB)
model. Three sets of simulations (6 realizations) have been used to investigate
the halo formation time distribution for halo masses ranging from dwarf-galaxy
like haloes (, where is the characteristic non-linear mass
scale) to massive haloes of . None of the models can match the
simulation results at both high and low redshift. In particular, dark matter
haloes formed generally earlier in our simulations than predicted by the EPS
model. This discrepancy might help explain why semi-analytic models of galaxy
formation, based on EPS merger trees, under-predict the number of high redshift
galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA
Quark-gluon vertex with an off-shell O(a)-improved chiral fermion action
We perform a study the quark-gluon vertex function with a quenched Wilson
gauge action and a variety of fermion actions. These include the domain wall
fermion action (with exponentially accurate chiral symmetry) and the Wilson
clover action both with the non-perturbatively improved clover coefficient as
well as with a number of different values for this coefficient. We find that
the domain wall vertex function behaves very well in the large momentum
transfer region. The off-shell vertex function for the on-shell improved clover
class of actions does not behave as well as the domain wall case and,
surprisingly, shows only a weak dependence on the clover coefficient
for all components of its Dirac decomposition and across all momenta. Including
off-shell improvement rotations for the clover fields can make this action
yield results consistent with those from the domain wall approach, as well as
helping to determine the off-shell improved coefficient .Comment: 11 pages, 13 figures, REVTeX
Nonuniversal Effects in the Homogeneous Bose Gas
Effective field theory predicts that the leading nonuniversal effects in the
homogeneous Bose gas arise from the effective range for S-wave scattering and
from an effective three-body contact interaction. We calculate the leading
nonuniversal contributions to the energy density and condensate fraction and
compare the predictions with results from diffusion Monte Carlo calculations by
Giorgini, Boronat, and Casulleras. We give a crude determination of the
strength of the three-body contact interaction for various model potentials.
Accurate determinations could be obtained from diffusion Monte Carlo
calculations of the energy density with higher statistics.Comment: 24 pages, RevTex, 5 ps figures, included with epsf.te
Remarks on the Theory of Cosmological Perturbation
It is shown that the power spectrum defined in the Synchronous Gauge can not
be directly used to calculate the predictions of cosmological models on the
large-scale structure of universe, which should be calculated directly by a
suitable gauge-invariant power spectrum or the power spectrum defined in the
Newtonian Gauge.Comment: 13 pages, 1 figure, minor changes, to be published in Chinese Physics
Letter
Exploring the Referral and Usage of Science Fiction in HCI Literature
Research on science fiction (sci-fi) in scientific publications has indicated
the usage of sci-fi stories, movies or shows to inspire novel Human-Computer
Interaction (HCI) research. Yet no studies have analysed sci-fi in a top-ranked
computer science conference at present. For that reason, we examine the CHI
main track for the presence and nature of sci-fi referrals in relationship to
HCI research. We search for six sci-fi terms in a dataset of 5812 CHI main
proceedings and code the context of 175 sci-fi referrals in 83 papers indexed
in the CHI main track. In our results, we categorize these papers into five
contemporary HCI research themes wherein sci-fi and HCI interconnect: 1)
Theoretical Design Research; 2) New Interactions; 3) Human-Body Modification or
Extension; 4) Human-Robot Interaction and Artificial Intelligence; and 5)
Visions of Computing and HCI. In conclusion, we discuss results and
implications located in the promising arena of sci-fi and HCI research.Comment: v1: 20 pages, 4 figures, 3 tables, HCI International 2018 accepted
submission v2: 20 pages, 4 figures, 3 tables, added link/doi for Springer
proceedin
A proposal for highly tunable optical parametric oscillation in silicon micro-resonators
We propose a novel scheme for continuous-wave pumped optical parametric oscillation (OPO) inside silicon micro-resonators. The proposed scheme not only requires a relative low lasing threshold, but also exhibits extremely broad tunability extending from the telecom band to mid infrared
Adiabatic self-tuning in a silicon microdisk optical resonator
We demonstrate a method for adiabatically self-tuning a silicon microdisk resonator. This mechanism is not only able to sensitively probe the fast nonlinear cavity dynamics, but also provides various optical functionalities like pulse compression, shaping, and tunable time delay
- …
