1,547 research outputs found
Low pT Hadronic Physics with CMS
The pixel detector of CMS can be used to reconstruct very low pT charged
particles down to about 0.1 GeV/c. This can be achieved with high efficiency,
good resolution and a negligible fake rate for elementary collisions. In the
case of central PbPb collisions the fake rate can be kept low for pT > 0.4
GeV/c. In addition, the detector can be employed for identification of neutral
hadrons (V0s) and converted photons.Comment: 6 pages. Presented at the Poster Session of Quark Matter 2006
Conference, Shanghai, 14-20 November 2006. Submitted to IJMP
High energy solar neutrinos and p-wave contributions to ^3He(p,\nue^+)^4He
High energy solar neutrinos can come from the hep reaction ^3He(p,\nue^+)^4He
with a large end point energy of 18.8 MeV. Understanding the hep reaction may
be important for interpreting solar neutrino spectra. We calculate the
contribution of the axial charge transition to the hep
thermonuclear S factor using a one-body reaction model involving a nucleon
moving in optical potentials. Our result is comparable to or larger than
previous calculations of the s-wave Gamow Teller contribution. This indicates
that the hep reaction may have p-wave strength leading to an enhancement of the
S factor.Comment: 4 pages, 1 ps figure, very minor changes, Phys. Rev. C in pres
Single-inclusive production of large-pT charged particles in hadronic collisions at TeV energies and perturbative QCD predictions
The single inclusive spectrum of charged particles with transverse momenta
pT=3-150 GeV/c measured at midrapidity by the CDF experiment in
proton-antiproton (p-pbar) collisions at sqrt(s)=1.96 TeV is compared to
next-to-leading order (NLO) perturbative QCD calculations using the most recent
parametrizations of the parton distributions and parton-to-hadron fragmentation
functions. Above pT~20 GeV/c, there is a very sizeable disagreement of the
Tevatron data compared to the NLO predictions and to xT-scaling expectations,
suggesting a problem in the experimental data. We also present the predictions
for the pT-differential charged hadron spectra and the associated theoretical
uncertainties for proton-proton (p-p) collisions at LHC energies
(sqrt(s)=0.9-14 TeV). Two procedures to estimate the charged hadron spectra at
LHC heavy-ion collision energies (sqrt(s)=2.76,5.5 TeV) from p-p measurements
are suggested.Comment: 23 pages, 9 figures. A few text additions. Accepted for publication
in JHE
Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at = 5.02 TeV
Two-particle angular correlations between unidentified charged trigger and
associated particles are measured by the ALICE detector in p-Pb collisions at a
nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum
range 0.7 5.0 GeV/ is examined,
to include correlations induced by jets originating from low
momen\-tum-transfer scatterings (minijets). The correlations expressed as
associated yield per trigger particle are obtained in the pseudorapidity range
. The near-side long-range pseudorapidity correlations observed in
high-multiplicity p-Pb collisions are subtracted from both near-side
short-range and away-side correlations in order to remove the non-jet-like
components. The yields in the jet-like peaks are found to be invariant with
event multiplicity with the exception of events with low multiplicity. This
invariance is consistent with the particles being produced via the incoherent
fragmentation of multiple parton--parton scatterings, while the yield related
to the previously observed ridge structures is not jet-related. The number of
uncorrelated sources of particle production is found to increase linearly with
multiplicity, suggesting no saturation of the number of multi-parton
interactions even in the highest multiplicity p-Pb collisions. Further, the
number scales in the intermediate multiplicity region with the number of binary
nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/161
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
The CERN Neutrino beam to Gran Sasso (NGS)
The conceptual technical design of the NGS (CERN neutrino beam to Gran Sasso) facility has been presented in the report CERN 98-02 / INFN-AE/98-05. Additional information, in particular an update on various neutrino beam options for the NGS facility, has been provided in a memorandum to the CERN-SPSC Committee (CERN-SPSC/98-35). In the present report, further improvements on the NGS design and performance, in particular new scenarios for SPS proton cycles for NGS operation and a new version of the NGS "high energy" neutrino beam for nt appearance experiments, are described. This new NGS reference beam is estimated to provide three times more nt events per year than the beam presented in the 1998 report. The radiological aspects of the NGS facility have been re-examined with the new beam design. An updated version of the construction schedule is also presented
Solar Neutrinos: What We Have Learned
The four operating solar neutrino experiments confirm the hypothesis that the
energy source for solar luminosity is hydrogen fusion. However, the measured
rate for each of the four solar neutrino experiments differs significantly (by
factors of 2.0 to 3.5) from the corresponding theoretical prediction that is
based upon the standard solar model and the simplest version of the standard
electroweak theory. If standard electroweak theory is correct, the energy
spectrum for \b8 neutrinos created in the solar interior must be the same (to
one part in ) as the known laboratory \b8 neutrino energy spectrum.
Direct comparison of the chlorine and the Kamiokande experiments, both
sensitive to \b8 neutrinos, suggests that the discrepancy between theory and
observations depends upon neutrino energy, in conflict with standard
expectations. Monte Carlo studies with 1000 implementations of the standard
solar model confirm that the chlorine and the Kamiokande experiments cannot be
reconciled unless new weak interaction physics changes the shape of the \b8
neutrino energy spectrum. The results of the two gallium solar neutrino
experiments strengthen the conclusion that new physics is required and help
determine a relatively small allowed region for the MSW neutrino parameters.Comment: LaTeX file, 19 pages. For hardcopy with figures contact
[email protected]. Institute for Advanced Study number AST 93/6
Charge separation relative to the reaction plane in Pb-Pb collisions at TeV
Measurements of charge dependent azimuthal correlations with the ALICE
detector at the LHC are reported for Pb-Pb collisions at TeV. Two- and three-particle charge-dependent azimuthal correlations in
the pseudo-rapidity range are presented as a function of the
collision centrality, particle separation in pseudo-rapidity, and transverse
momentum. A clear signal compatible with a charge-dependent separation relative
to the reaction plane is observed, which shows little or no collision energy
dependence when compared to measurements at RHIC energies. This provides a new
insight for understanding the nature of the charge dependent azimuthal
correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
- …
