47,292 research outputs found
Flopping-mode electric dipole spin resonance
Traditional approaches to controlling single spins in quantum dots require
the generation of large electromagnetic fields to drive many Rabi oscillations
within the spin coherence time. We demonstrate "flopping-mode" electric dipole
spin resonance, where an electron is electrically driven in a Si/SiGe double
quantum dot in the presence of a large magnetic field gradient. At zero
detuning, charge delocalization across the double quantum dot enhances coupling
to the drive field and enables low power electric dipole spin resonance.
Through dispersive measurements of the single electron spin state, we
demonstrate a nearly three order of magnitude improvement in driving efficiency
using flopping-mode resonance, which should facilitate low power spin control
in quantum dot arrays
The difference of boundary effects between Bose and Fermi systems
In this paper, we show that there exists an essential difference of boundary
effects between Bose and Fermi systems both for Dirichlet and Neumann boundary
conditions: at low temperatures and high densities the influence of the
boundary on the Bose system depends on the temperature but is independent of
the density, but for the Fermi case the influence of the boundary is
independent of the temperature but depends on the density, after omitting the
negligible high-order corrections. We also show that at high temperatures and
low densities the difference of the influence of the boundary between Bose and
Fermi systems appears in the next-to-leading order boundary contribution, and
the leading boundary contribution is independent of the density. Moreover, for
calculating the boundary effects at high temperatures and low densities, since
the existence of the boundary modification causes the standard virial expansion
to be invalid, we introduce a modified virial expansion.Comment: 8 page
A Coherent Spin-Photon Interface in Silicon
Electron spins in silicon quantum dots are attractive systems for quantum
computing due to their long coherence times and the promise of rapid scaling
using semiconductor fabrication techniques. While nearest neighbor exchange
coupling of two spins has been demonstrated, the interaction of spins via
microwave frequency photons could enable long distance spin-spin coupling and
"all-to-all" qubit connectivity. Here we demonstrate strong-coupling between a
single spin in silicon and a microwave frequency photon with spin-photon
coupling rates g_s/(2\pi) > 10 MHz. The mechanism enabling coherent spin-photon
interactions is based on spin-charge hybridization in the presence of a
magnetic field gradient. In addition to spin-photon coupling, we demonstrate
coherent control of a single spin in the device and quantum non-demolition spin
state readout using cavity photons. These results open a direct path toward
entangling single spins using microwave frequency photons
Direct electronic measurement of the spin Hall effect
The generation, manipulation and detection of spin-polarized electrons in
nanostructures define the main challenges of spin-based electronics[1]. Amongst
the different approaches for spin generation and manipulation, spin-orbit
coupling, which couples the spin of an electron to its momentum, is attracting
considerable interest. In a spin-orbit-coupled system, a nonzero spin-current
is predicted in a direction perpendicular to the applied electric field, giving
rise to a "spin Hall effect"[2-4]. Consistent with this effect,
electrically-induced spin polarization was recently detected by optical
techniques at the edges of a semiconductor channel[5] and in two-dimensional
electron gases in semiconductor heterostructures[6,7]. Here we report
electrical measurements of the spin-Hall effect in a diffusive metallic
conductor, using a ferromagnetic electrode in combination with a tunnel barrier
to inject a spin-polarized current. In our devices, we observe an induced
voltage that results exclusively from the conversion of the injected spin
current into charge imbalance through the spin Hall effect. Such a voltage is
proportional to the component of the injected spins that is perpendicular to
the plane defined by the spin current direction and the voltage probes. These
experiments reveal opportunities for efficient spin detection without the need
for magnetic materials, which could lead to useful spintronics devices that
integrate information processing and data storage.Comment: 5 pages, 4 figures. Accepted for publication in Nature (pending
format approval
Diffeomorphic random sampling using optimal information transport
In this article we explore an algorithm for diffeomorphic random sampling of
nonuniform probability distributions on Riemannian manifolds. The algorithm is
based on optimal information transport (OIT)---an analogue of optimal mass
transport (OMT). Our framework uses the deep geometric connections between the
Fisher-Rao metric on the space of probability densities and the right-invariant
information metric on the group of diffeomorphisms. The resulting sampling
algorithm is a promising alternative to OMT, in particular as our formulation
is semi-explicit, free of the nonlinear Monge--Ampere equation. Compared to
Markov Chain Monte Carlo methods, we expect our algorithm to stand up well when
a large number of samples from a low dimensional nonuniform distribution is
needed.Comment: 8 pages, 3 figure
- …
