66,349 research outputs found
Managing the noisy glaucomatous test data by self organising maps
One of the main difficulties in obtaining reliable data from patients in glaucomatous tests is the measurement noise caused by the learning effect, inattention, failure of fixation, fatigue, etc. Using Kohonen's self-organising feature maps, we have developed a computational method to distinguish between the noise and true measurement. This method has been shown to provide a satisfactory way of locating and rejecting noise in the test data, an improvement over conventional statistical method
Chromospheric Evaporation in an X1.0 Flare on 2014 March 29 Observed with IRIS and EIS
Chromospheric evaporation refers to dynamic mass motions in flare loops as a
result of rapid energy deposition in the chromosphere. These have been observed
as blueshifts in X-ray and extreme-ultraviolet (EUV) spectral lines
corresponding to upward motions at a few tens to a few hundreds of km/s. Past
spectroscopic observations have also revealed a dominant stationary component,
in addition to the blueshifted component, in emission lines formed at high
temperatures (~10 MK). This is contradictory to evaporation models predicting
predominant blueshifts in hot lines. The recently launched Interface Region
Imaging Spectrograph (IRIS) provides high resolution imaging and spectroscopic
observations that focus on the chromosphere and transition region in the UV
passband. Using the new IRIS observations, combined with coordinated
observations from the EUV Imaging Spectrometer, we study the chromospheric
evaporation process from the upper chromosphere to corona during an X1.0 flare
on 2014 March 29. We find evident evaporation signatures, characterized by
Doppler shifts and line broadening, at two flare ribbons separating from each
other, suggesting that chromospheric evaporation takes place in successively
formed flaring loops throughout the flare. More importantly, we detect dominant
blueshifts in the high temperature Fe XXI line (~10 MK), in agreement with
theoretical predictions. We also find that, in this flare, gentle evaporation
occurs at some locations in the rise phase of the flare, while explosive
evaporation is detected at some other locations near the peak of the flare.
There is a conversion from gentle to explosive evaporation as the flare
evolves.Comment: ApJ in pres
AI for public health: Self-screening for eye diseases
A software-based visual-field testing (perimetry) system is described which incorporates several AI components, including machine learning, an intelligent user interface and pattern discovery. This system has been successfully used for self-screening in several different public environment
Colossal negative magnetoresistance in dilute fluorinated graphene
Adatoms offer an effective route to modify and engineer the properties of
graphene. In this work, we create dilute fluorinated graphene using a clean,
controlled and reversible approach. At low carrier densities, the system is
strongly localized and exhibits an unexpected, colossal negative
magnetoresistance. The zero-field resistance is reduced by a factor of 40 at
the highest field of 9 T and shows no sign of saturation. Unusual "staircase"
field dependence is observed below 5 K. The magnetoresistance is highly
anisotropic. We discuss possible origins, considering quantum interference
effects and adatom-induced magnetism in graphene.Comment: 21 pages, 4 figures, including supplementary informatio
- …
