649 research outputs found
Impurity-induced transition and impurity-enhanced thermopower in the thermoelectric oxide NaCo_{2-x}Cu_x$O_4
Various physical quantities are measured and analysed for the Cu-substituted
thermoelectric oxide NaCo_{2-x}Cu_xO_4. As was previously known, the
substituted Cu enhances the thermoelectric power, while it does not increase
the resistivity significantly. The susceptibility and the electron
specific-heat are substantially decreased with increasing x, which implies that
the substituted Cu decreases the effective-mass enhancement. Through a
quantitative comparison with the heavy fermion compounds and the valence
fluctuation systems, we have found that the Cu substitution effectively
increases the coupling between the conduction electron and the magnetic
fluctuation. The Cu substitution induces a phase transition at 22 K that is
very similar to a spin-density-wave transition.Comment: 8 pages, 7 figures, submitted to Phys. Rev.
Representations and Properties of Generalized Statistics, Coherent States and Robertson Uncertainty Relations
The generalization of statistics, including bosonic and fermionic
sectors, is performed by means of the so-called Jacobson generators. The
corresponding Fock spaces are constructed. The Bargmann representations are
also considered. For the bosonic statistics, two inequivalent Bargmann
realizations are developed. The first (resp. second) realization induces, in a
natural way, coherent states recognized as Gazeau-Klauder (resp.
Klauder-Perelomov) ones. In the fermionic case, the Bargamnn realization leads
to the Klauder-Perelomov coherent states. For each considered realization, the
inner product of two analytic functions is defined in respect to a measure
explicitly computed. The Jacobson generators are realized as differential
operators. It is shown that the obtained coherent states minimize the
Robertson-Schr\"odinger uncertainty relation.Comment: 16 pages, published in JP
Thermoelectric properties of the layered Pd oxide R_2PdO_4 (R = La, Nd, Sm and Gd)
We prepared polycrystalline samples of RPdO (R = La, Nd, Sm and Gd)
using a NaCl-flux technique. The measured resistivity is of the order of
10 cm at room temperature, which is two orders of magnitude
smaller than the values reported so far. We further studied the substitution
effects of Ce for Nd in NdCePdO, where the substituted Ce
decreases the resistivity and the magnitude of the thermopower. The activation
energy gap of 70-80 meV and the effective mass of 15 evaluated from the
measured data are suitable for thermoelectric materials, but the mobility of
10 cm/Vs is much lower than a typical value of 1-10 cm/Vs for
other thermoelectric oxides.Comment: 5 pages, 5 figures, to appear in J. Phys. Soc. Jp
Hidden magnetic transitions in thermoelectric layered cobaltite, [CaCoO][CoO]
A positive muon spin rotation and relaxation (SR) experiment on
[CaCoO][CoO], ({\sl i.e.}, CaCoO, a layered
thermoelectric cobaltite) indicates the existence of two magnetic transitions
at 100 K and 400 - 600 K; the former is a transition from a paramagnetic
state to an incommensurate ({\sf IC}) spin density wave ({\sf SDW}) state. The
anisotropic behavior of zero-field SR spectra at 5 K suggests that the
{\sf IC-SDW} propagates in the - plane, with oscillating moments directed
along the c-axis; also the {\sf IC-SDW} is found to exist not in the
[CaCoO] subsystem but in the [CoO] subsystem. In addition, it is
found that the long-range {\sf IC-SDW} order completes below 30 K,
whereas the short-range order appears below 100 K. The latter transition is
interpreted as a gradual change in the spin state of Co ions %% at temperatures
above 400 K. These two magnetic transitions detected by SR are found to
correlate closely with the transport properties of
[CaCoO][CoO].Comment: 7 pages, 8 figures. to be appeared in Phys. Rev.
Measurement of parity-nonconserving rotation of neutron spin in the 0.734-eV p-wave resonance of
The parity nonconserving spin rotation of neutrons in the 0.734-eV p-wave
resonance of was measured with the neutron transmission method. Two
optically polarized cells were used before and behind a a 5-cm long
target as a polarizer and an analyzer of neutron spin. The rotation
angle was carefully measured by flipping the direction of polarization
in the polarizer in sequence. The peak-to-peak value of the spin rotation was
found to be rad/cm which was consistent with
the previous experiments. But the result was statisticallly improved. The s-p
mixing model gives the weak matrix element as meV. The
value agrees well with the one deduced from the parity-nonconserving
longitudinal asymmetry in the same resonance
Physical properties of misfit-layered (Bi,Pb)-Sr-Co-O system: Effect of hole doping into triangular lattice formed by low-spin Co ions
Pb-doping effect on physical properties of misfit-layered (Bi,Pb)-Sr-Co-O
system, in which Co ions form a two-dimensional triangular lattice, was
investigated in detail by electronic transport, magnetization and specific-heat
measurements. Pb doping enhances the metallic behavior, suggesting that
carriers are doped. Pb doping also enhances the magnetic correlation in this
system and increases the magnetic transition temperature. We found the
existence of the short-range magnetic correlation far above the transition
temperature, which seems to induce the spin-glass state coexisting with the
ferromagnetic long-range order at low temperatures. Specific-heat measurement
suggests that the effective mass of the carrier in (Bi,Pb)-Sr-Co-O is not
enhanced so much as reported in NaCoO. Based on these experimental
results, we propose a two-bands model which consists of narrow and
rather broad bands. The observed magnetic property and
magnetotransport phenomena are explained well by this model
A common behavior of thermoelectric layered cobaltites: incommensurate spin density wave states in [CaCoCuO][CoO] and [CaCoO][CoO]
Magnetism of a misfit layered cobaltite
[CaCoCuO][CoO] ( 0.62, RS
denotes a rocksalt-type block) was investigated by a positive muon spin
rotation and relaxation (SR) experiment. A transition to an
incommensurate ({\sf IC}) spin density wave ({\sf SDW}) state was found below
180 K (= ); and a clear oscillation due to a static
internal magnetic field was observed below 140 K (= ). Furthermore,
an anisotropic behavior of the zero-field SR experiment indicated that
the {\sf IC-SDW} propagates in the - plane, with oscillating moments
directed along the c axis. These results were quite similar to those for the
related compound [CaCoO][CoO], {\sl i.e.},
CaCoO. Since the {\sf IC-SDW} field in
[CaCoCuO][CoO] was approximately
same to those in pure and doped [CaCoO][CoO], it
was concluded that the {\sf IC-SDW} exist in the [CoO] planes.Comment: 15 pages, 6 figures. accepted for publication in J. Phys.: Condens.
Matte
Quantum Critical Behavior and Possible Triplet Superconductivity in Electron Doped CoO2 Sheets
Density functional calculations are used to investigate the doping dependence
of the electronic structure and magnetic properties in hexagonal NaCoO.
The electronic structure is found to be highly two dimensional, even without
accounting for the structural changes associated with hydration. At the local
spin density approximation level, a weak itinerant ferromagnetic state is
predicted for all doping levels in the range to , with competing
but weaker itinerant antiferromagnetic solutions. The Fermi surface, as
expected, consists of simple rounded hexagonal cylinders, with additional small
pockets depending on the lattice parameter. Comparison with experiment
implies substantial magnetic quantum fluctuations. Based on the Fermi surface
size and the ferromagnetic tendency of this material,it is speculated that a
triplet superconducting state analogous to that in SrRuO may exist
here.Comment: 4 pages, 1 figur
An integrated network visualization framework towards metabolic engineering applications
Background
Over the last years, several methods for the phenotype simulation of microorganisms, under specified genetic and environmental conditions have been proposed, in the context of Metabolic Engineering (ME). These methods provided insight on the functioning of microbial metabolism and played a key role in the design of genetic modifications that can lead to strains of industrial interest. On the other hand, in the context of Systems Biology research, biological network visualization has reinforced its role as a core tool in understanding biological processes. However, it has been scarcely used to foster ME related methods, in spite of the acknowledged potential.
Results
In this work, an open-source software that aims to fill the gap between ME and metabolic network visualization is proposed, in the form of a plugin to the OptFlux ME platform. The framework is based on an abstract layer, where the network is represented as a bipartite graph containing minimal information about the underlying entities and their desired relative placement. The framework provides input/output support for networks specified in standard formats, such as XGMML, SBGN or SBML, providing a connection to genome-scale metabolic models. An user-interface makes it possible to edit, manipulate and query nodes in the network, providing tools to visualize diverse effects, including visual filters and aspect changing (e.g. colors, shapes and sizes). These tools are particularly interesting for ME, since they allow overlaying phenotype simulation results or elementary flux modes over the networks.
Conclusions
The framework and its source code are freely available, together with documentation and other resources, being illustrated with well documented case studies.This work is partially funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT (Portuguese Foundation for Science and Technology) within project ref. COMPETE FCOMP-01-0124-FEDER-015079 and the FCT Strategic Project PEst-OE/EQB/LA0023/2013. The work of PV is funded by PhD grant ref. SFRH/BDE/51442/2011
Smoking and health-related quality of life in English general population: Implications for economic evaluations
Copyright @ 2012 Vogl et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Little is known as to how health-related quality of life (HRQoL) when measured by generic instruments such as EQ-5D differ across smokers, ex-smokers and never-smokers in the general population; whether the overall pattern of this difference remain consistent in each domain of HRQoL; and what implications this variation, if any, would have for economic evaluations of tobacco control interventions. Methods: Using the 2006 round of Health Survey for England data (n = 13,241), this paper aims to examine the impact of smoking status on health-related quality of life in English population. Depending upon the nature of the EQ-5D data (i.e. tariff or domains), linear or logistic regression models were fitted to control for biology, clinical conditions, socio-economic background and lifestyle factors that an individual may have regardless of their smoking status. Age- and gender-specific predicted values according to smoking status are offered as the potential 'utility' values to be used in future economic evaluation models. Results: The observed difference of 0.1100 in EQ-5D scores between never-smokers (0.8839) and heavy-smokers (0.7739) reduced to 0.0516 after adjusting for biological, clinical, lifestyle and socioeconomic conditions. Heavy-smokers, when compared with never-smokers, were significantly more likely to report some/severe problems in all five domains - mobility (67%), self-care (70%), usual activity (42%), pain/discomfort (46%) and anxiety/depression (86%) -. 'Utility' values by age and gender for each category of smoking are provided to be used in the future economic evaluations. Conclusion: Smoking is significantly and negatively associated with health-related quality of life in English general population and the magnitude of this association is determined by the number of cigarettes smoked. The varying degree of this association, captured through instruments such as EQ-5D, may need to be fed into the design of future economic evaluations where the intervention being evaluated affects (e.g. tobacco control) or is affected (e.g. treatment for lung cancer) by individual's (or patients') smoking status
- …
