9,126 research outputs found
Effects of a nonadiabatic wall on supersonic shock/boundary-layer interactions
Direct numerical simulations are employed to investigate a shock wave impinging on a turbulent boundary layer at free-stream Mach number M=2.28 with different wall thermal conditions, including adiabatic, cooled, and heated, for a wide range of deflection angles. It is found that the thermal boundary condition at the wall has a large effect on the size of the interaction region and on the level of pressure fluctuations. The distribution of the Stanton number shows a good agreement with prior experimental studies and confirms the strong heat transfer and complex pattern within the interaction region. An effort was also made to describe the unsteady features of the flow by means of wall pressure and heat flux spectra. Numerical results indicate that the changes in the interaction length due to the wall thermal condition are mainly linked to the incoming boundary layer, which is in agreement with previous experimental studies
Dependence of the drag over super hydrophobic and liquid infused surfaces on the textured surface and Weber number
Direct Numerical Simulations of a turbulent channel flow have been performed. The lower wall of the channel is made of staggered cubes with a second fluid locked in the cavities. Two viscosity ratios have been considered, m=μ1/μ2=0.02 and 0.4 (the subscript 1 indicates the fluid in the cavities and 2 the overlying fluid) mimicking the viscosity ratio in super–hydrophobic surfaces (SHS) and liquid infused surfaces (LIS) respectively. A first set of simulations with a slippery interface has been performed and results agree well with those in literature for perfect slip conditions and Stokes approximations. To assess how the dynamics of the interface affects the drag, a second set of DNS has been carried out at We=40 and 400 corresponding to We+≃10−3 and 10−2. The deformation of the interface is fully coupled to the Navier-Stokes equation and tracked in time using a Level Set Method. Two gas fractions, GF=0.5 and 0.875, have been considered to assess how the spacing between the cubes affects the deformation of the interface and therefore the drag. For the dimensions of the substrate here considered, under the ideal assumption of flat interface, staggered cubes with GF=0.875 provide about 20% drag reduction for We=0. However, a rapid degradation of the performances is observed when the dynamics of the interface is considered, and the same geometry increases the drag of about 40% with respect to a smooth wall. On the other hand, the detrimental effect of the dynamics of the interface is much weaker for GF=0.5 because of the reduced pitch between the cubes
Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions
Direct numerical simulations are carried out to investigate the effect of the
wall temperature on the behavior of oblique shock-wave/turbulent boundary layer
interactions at freestream Mach number and shock angle of the wedge
generator . Five values of the
wall-to-recovery-temperature ratio () are considered, corresponding to
cold, adiabatic and hot wall thermal conditions. We show that the main effect
of cooling is to decrease the characteristic scales of the interaction in terms
of upstream influence and extent of the separation bubble. The opposite
behavior is observed in the case of heating, that produces a marked dilatation
of the interaction region. The distribution of the Stanton number shows that a
strong amplification of the heat transfer occurs across the interaction, and
the maximum values of thermal and dynamic loads are found in the case of cold
wall. The analysis reveals that the fluctuating heat flux exhibits a strong
intermittent behavior, characterized by scattered spots with extremely high
values compared to the mean. Furthermore, the analogy between momentum and heat
transfer, typical of compressible, wall-bounded, equilibrium turbulent flows
does not apply for most part of the interaction domain. The pre-multiplied
spectra of the wall heat flux do not show any evidence of the influence of the
low-frequency shock motion, and the primary mechanism for the generation of
peak heating is found to be linked with the turbulence amplification in the
interaction region.Comment: submitted to PRFluid
Macroscopic polarization and band offsets at nitride heterojunctions
Ab initio electronic structure studies of prototypical polar interfaces of
wurtzite III-V nitrides show that large uniform electric fields exist in
epitaxial nitride overlayers, due to the discontinuity across the interface of
the macroscopic polarization of the constituent materials. Polarization fields
forbid a standard evaluation of band offsets and formation energies: using new
techniques, we find a large forward-backward asymmetry of the offset (0.2 eV
for AlN/GaN (0001), 0.85 eV for GaN/AlN (0001)), and tiny interface formation
energies.Comment: RevTeX 4 pages, 2 figure
Formation and stability of a two-dimensional nickel silicide on Ni (111) an Auger, LEED, STM, and high-resolution photoemission Study
Using low energy electron diffraction (LEED), Auger electron spectroscopy
(AES), scanning tunnelling microscopy (STM) and high resolution photo-electron
spectroscopy (HR-PES) techniques we have studied the annealing effect of one
silicon monolayer deposited at room temperature onto a Ni (111) substrate. The
variations of the Si surface concentration, recorded by AES at 300{\deg}C and
400{\deg}C, show at the beginning a rapid Si decreasing followed by a slowing
down up to a plateau equivalent to about 1/3 silicon monolayer. STM images and
LEED patterns, both recorded at room temperature just after annealing, reveal
the formation of an ordered hexagonal superstructure(rot3xrot3)R30{\deg}-type.
From these observations and from a quantitative analysis of HR-PES data,
recorded before and after annealing, we propose that the (rot3 x
rot3)R30{\deg}superstructure corresponds to a two dimensional (2D) Ni2Si
surface silicide.Comment: Journal Physical Review B (2012
Theoretical correlation between possible evidences of neutrino chiral oscillations and polarization measurements
Reporting about the formalism with the Dirac equation we describe the
dynamics of chiral oscillations for a fermionic particle non-minimally coupling
with an external magnetic field. For massive particles, the chirality and
helicity quantum numbers represent different physical quantities of
representative importance in the study of chiral interactions, in particular,
in the context of neutrino physics. After solving the interacting Hamiltonian
(Dirac) equation for the corresponding {\em fermionic} Dirac-{\em type}
particle (neutrino) and quantifying chiral oscillations in the Dirac wave
packet framework, we avail the possibility of determining realistic neutrino
chirality conversion rates by means of (helicity) polarization measurements. We
notice that it can become feasible for some particular magnetic field
configurations with large values of {\boldmath} orthogonal to the direction
of the propagating particle.Comment: 12 pages, 2 figure
Accurate calculation of polarization-related quantities in semiconductors
We demonstrate that polarization-related quantities in semiconductors can be
predicted accurately from first-principles calculations using the appropriate
approach to the problem, the Berry-phase polarization theory. For III-V
nitrides, our test case, we find polarizations, polarization differences
between nitride pairs, and piezoelectric constants quite close to their
previously established values. Refined data are nevertheless provided for all
the relevant quantities.Comment: RevTeX 4 pages, no figure
Sensitivity for tau neutrinos at PeV energies and beyond with the MAGIC telescopes
The MAGIC telescopes, located at the Roque de los Muchachos Observatory (2200
a.s.l.) in the Canary Island of La Palma, are placed on the top of a mountain,
from where a window of visibility of about 5 deg in zenith and 80 deg in
azimuth is open in the direction of the surrounding ocean. This permits to
search for a signature of particle showers induced by earth-skimming cosmic tau
neutrinos in the PeV to EeV energy range arising from the ocean. We have
studied the response of MAGIC to such events, employing Monte Carlo simulations
of upward-going tau neutrino showers. The analysis of the shower images shows
that air showers induced by tau neutrinos can be discriminated from the
hadronic background coming from a similar direction. We have calculated the
point source acceptance and the expected event rates, assuming an incoming tau
neutrino flux consistent with IceCube measurements, and for a sample of generic
neutrino fluxes from photo-hadronic interactions in AGNs. The analysis of about
30 hours of data taken toward the sea leads to a point source sensitivity for
tau neutrinos at the level of the down-going point source analysis of the
Pierre Auger Observatory.Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC
2017), Bexco, Busan, Korea,(arXiv:1708.05153
- …
