37,164 research outputs found
The causal meaning of Fisher's average effect
In order to formulate the Fundamental Theorem of Natural Selection, Fisher
defined the average excess and average effect of a gene substitution. Finding
these notions to be somewhat opaque, some authors have recommended
reformulating Fisher's ideas in terms of covariance and regression, which are
classical concepts of statistics. We argue that Fisher intended his two
averages to express a distinction between correlation and causation. On this
view the average effect is a specific weighted average of the actual phenotypic
changes that result from physically changing the allelic states of homologous
genes. We show that the statistical and causal conceptions of the average
effect, perceived as inconsistent by Falconer, can be reconciled if certain
relationships between the genotype frequencies and non-additive residuals are
conserved. There are certain theory-internal considerations favoring Fisher's
original formulation in terms of causality; for example, the frequency-weighted
mean of the average effects equaling zero at each locus becomes a derivable
consequence rather than an arbitrary constraint. More broadly, Fisher's
distinction between correlation and causation is of critical importance to
gene-trait mapping studies and the foundations of evolutionary biology
Yang-Mills Flow and Uniformization Theorems
We consider a parabolic-like systems of differential equations involving
geometrical quantities to examine uniformization theorems for two- and
three-dimensional closed orientable manifolds. We find that in the
two-dimensional case there is a simple gauge theoretic flow for a connection
built from a Riemannian structure, and that the convergence of the flow to the
fixed points is consistent with the Poincare Uniformization Theorem. We
construct a similar system for the three-dimensional case. Here the connection
is built from a Riemannian geometry, an SO(3) connection and two other 1-form
fields which take their values in the SO(3) algebra. The flat connections
include the eight homogeneous geometries relevant to the three-dimensional
uniformization theorem conjectured by W. Thurston. The fixed points of the flow
include, besides the flat connections (and their local deformations), non-flat
solutions of the Yang-Mills equations. These latter "instanton" configurations
may be relevant to the fact that generic 3-manifolds do not admit one of the
homogeneous geometries, but may be decomposed into "simple 3-manifolds" which
do.Comment: 21 pages, Latex, 5 Postscript figures, uses epsf.st
Large Universality of The Baryon Isgur--Wise Form Factor: The Group Theoretical Approach
In a previous article, it has been proved under the framework of chiral
soliton model that the same Isgur--Wise form factor describes the semileptonic
and decays in the
large limit. It is shown here that this result is in fact independent of
the chiral soliton model and is solely the consequence of the spin-flavor SU(4)
symmetry which arises in the baryon sector in the large limit.Comment: 10 pages in REVTeX, no figure
Locally addressable tunnel barriers within a carbon nanotube
We report the realization and characterization of independently controllable
tunnel barriers within a carbon nanotube. The nanotubes are mechanically bent
or kinked using an atomic force microscope, and top gates are subsequently
placed near each kink. Transport measurements indicate that the kinks form
gate-controlled tunnel barriers, and that gates placed away from the kinks have
little or no effect on conductance. The overall conductance of the nanotube can
be controlled by tuning the transmissions of either the kinks or the
metal-nanotube contacts.Comment: related papers at http://marcuslab.harvard.ed
Direct Formation of Structural Components Using a Martian Soil Simulant.
Martian habitats are ideally constructed using only locally available soils; extant attempts to process structural materials on Mars, however, generally require additives or calcination. In this work we demonstrate that Martian soil simulant Mars-1a can be directly compressed at ambient into a strong solid without additives, highlighting a possible aspect of complete Martian in-situ resource utilization. Flexural strength of the compact is not only determined by the compaction pressure but also significantly influenced by the lateral boundary condition of processing loading. The compression loading can be applied either quasi-statically or through impact. Nanoparticulate iron oxide (npOx), commonly detected in Martian regolith, is identified as the bonding agent. Gas permeability of compacted samples was measured to be on the order of 10-16 m2, close to that of solid rocks. The compaction procedure is adaptive to additive manufacturing
New negative differential resistance device based on resonant interband tunneling
We propose and demonstrate a novel negative differential resistance device based on resonant interband tunneling. Electrons in the InAs/AlSb/GaSb/AlSb/InAs structure tunnel from the InAs conduction band into a quantized state in the GaSb valence band, giving rise to a peak in the current-voltage characteristic. This heterostructure design virtually eliminates many of the competing transport mechanisms which limit the performance of conventional double-barrier structures. Peak-to-valley current ratios as high as 20 and 88 are observed at room temperature and liquid-nitrogen temperature, respectively. These are the highest values reported for any tunnel structure
Evolution of isolated turbulent trailing vortices
In this work, the temporal evolution of a low swirl-number turbulent Batchelor vortex is studied using pseudospectral direct numerical simulations. The solution of the governing equations in the vorticity-velocity form allows for accurate application of boundary conditions. The physics of the evolution is investigated with an emphasis on the mechanisms that influence the transport of axial and angular momentum. Excitation of normal mode instabilities gives rise to coherent large scale helical structures inside the vortical core. The radial growth of these helical structures and the action of axial shear and differential rotation results in the creation of a polarized vortex layer. This vortex layer evolves into a series of hairpin-shaped structures that subsequently breakdown into elongated fine scale vortices. Ultimately, the radially outward propagation of these structures results in the relaxation of the flow towards a stable high-swirl configuration. Two conserved quantities, based on the deviation from the laminar solution, are derived and these prove to be useful in characterizing the polarized vortex layer and enhancing the understanding of the transport process. The generation and evolution of the Reynolds stresses is also addressed
Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings
This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.36.002104. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] Single-wall carbon nanotube deposition on the cladding of optical fibers has been carried out to fabricate an all-fiber nonlinear device. Two different nanotube deposition techniques were studied. The first consisted of repeatedly immersing the optical fiber into a nanotube supension, increasing the thickness of the coating in each step. The second deposition involved wrapping a thin film of nanotubes around the optical fiber. For both cases, interaction of transmitted light through the fiber core with the external coating was assisted by the cladding mode resonances of a tilted fiber Bragg grating. Ultrafast nonlinear effects of the nanotube-coated fiber were measured by means of a pump-probe pulses experiment. © 2011 Optical Society of America.This work was financially supported by the European Commission under the FP7 EURO-FOS Network of Excellence (ICT-2007-2-224402), the Ministerio de Educación y Ciencia SINADEC project (TEC2008-06333), and the Natural Sciences and Engineering Research Council of Canada (NSERC). The work of G. E. Villanueva was supported by the Ministerio de Educación y Ciencia Formación de Profesorado Universitario programs. The work of P. Pérez-Millán was supported by the Juan de la Cierva program, JCI-2009-05805.Villanueva Ibáñez, GE.; Jakubinek, M.; Simard, B.; Oton Nieto, CJ.; Matres Abril, J.; Shao, L.; Pérez Millán, P.... (2011). Linear and nonlinear optical properties of carbon nanotube-coated single-mode optical fiber gratings. Optics Letters. 36(11):2104-2106. https://doi.org/10.1364/OL.36.002104S210421063611Sakakibara, Y., Rozhin, A. G., Kataura, H., Achiba, Y., & Tokumoto, M. (2005). Carbon Nanotube-Poly(vinylalcohol) Nanocomposite Film Devices: Applications for Femtosecond Fiber Laser Mode Lockers and Optical Amplifier Noise Suppressors. Japanese Journal of Applied Physics, 44(4A), 1621-1625. doi:10.1143/jjap.44.1621Chow, K. K., Yamashita, S., & Song, Y. W. (2009). A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber. Optics Express, 17(9), 7664. doi:10.1364/oe.17.007664Set, S. Y., Yaguchi, H., Tanaka, Y., & Jablonski, M. (2004). Ultrafast Fiber Pulsed Lasers Incorporating Carbon Nanotubes. IEEE Journal of Selected Topics in Quantum Electronics, 10(1), 137-146. doi:10.1109/jstqe.2003.822912Chow, K. K., Tsuji, M., & Yamashita, S. (2010). Single-walled carbon-nanotube-deposited tapered fiber for four-wave mixing based wavelength conversion. Applied Physics Letters, 96(6), 061104. doi:10.1063/1.3304789Chow, K. K., & Yamashita, S. (2009). Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion. Optics Express, 17(18), 15608. doi:10.1364/oe.17.015608Choi, S. Y., Rotermund, F., Jung, H., Oh, K., & Yeom, D.-I. (2009). Femtosecond mode-locked fiber laser employing a hollow optical fiber filled with carbon nanotube dispersion as saturable absorber. Optics Express, 17(24), 21788. doi:10.1364/oe.17.021788Chan, C.-F., Chen, C., Jafari, A., Laronche, A., Thomson, D. J., & Albert, J. (2007). Optical fiber refractometer using narrowband cladding-mode resonance shifts. Applied Optics, 46(7), 1142. doi:10.1364/ao.46.001142Kingston, C. T., Jakubek, Z. J., Dénommée, S., & Simard, B. (2004). Efficient laser synthesis of single-walled carbon nanotubes through laser heating of the condensing vaporization plume. Carbon, 42(8-9), 1657-1664. doi:10.1016/j.carbon.2004.02.020Jakubinek, M. B., Johnson, M. B., White, M. A., Guan, J., & Simard, B. (2010). Novel Method to Produce Single-Walled Carbon Nanotube Films and Their Thermal and Electrical Properties. Journal of Nanoscience and Nanotechnology, 10(12), 8151-8157. doi:10.1166/jnn.2010.3014Vallaitis, T., Koos, C., Bonk, R., Freude, W., Laemmlin, M., Meuer, C., … Leuthold, J. (2008). Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Optics Express, 16(1), 170. doi:10.1364/oe.16.00017
A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers
We propose a ridesharing strategy with integrated transit in which a private
on-demand mobility service operator may drop off a passenger directly
door-to-door, commit to dropping them at a transit station or picking up from a
transit station, or to both pickup and drop off at two different stations with
different vehicles. We study the effectiveness of online solution algorithms
for this proposed strategy. Queueing-theoretic vehicle dispatch and idle
vehicle relocation algorithms are customized for the problem. Several
experiments are conducted first with a synthetic instance to design and test
the effectiveness of this integrated solution method, the influence of
different model parameters, and measure the benefit of such cooperation.
Results suggest that rideshare vehicle travel time can drop by 40-60%
consistently while passenger journey times can be reduced by 50-60% when demand
is high. A case study of Long Island commuters to New York City (NYC) suggests
having the proposed operating strategy can substantially cut user journey times
and operating costs by up to 54% and 60% each for a range of 10-30 taxis
initiated per zone. This result shows that there are settings where such
service is highly warranted
- …
