53,913 research outputs found
Analytical study of tunneling times in flat histogram Monte Carlo
We present a model for the dynamics in energy space of multicanonical
simulation methods that lends itself to a rather complete analytic
characterization. The dynamics is completely determined by the density of
states. In the \pm J 2D spin glass the transitions between the ground state
level and the first excited one control the long time dynamics. We are able to
calculate the distribution of tunneling times and relate it to the
equilibration time of a starting probability distribution. In this model, and
possibly in any model in which entering and exiting regions with low density of
states are the slowest processes in the simulations, tunneling time can be much
larger (by a factor of O(N)) than the equilibration time of the probability
distribution. We find that these features also hold for the energy projection
of single spin flip dynamics.Comment: 7 pages, 4 figures, published in Europhysics Letters (2005
Large time behavior for vortex evolution in the half-plane
In this article we study the long-time behavior of incompressible ideal flow
in a half plane from the point of view of vortex scattering. Our main result is
that certain asymptotic states for half-plane vortex dynamics decompose
naturally into a nonlinear superposition of soliton-like states. Our approach
is to combine techniques developed in the study of vortex confinement with weak
convergence tools in order to study the asymptotic behavior of a self-similar
rescaling of a solution of the incompressible 2D Euler equations on a half
plane with compactly supported, nonnegative initial vorticity.Comment: 30 pages, no figure
The limit of vanishing viscosity for the incompressible 3D Navier-Stokes equations with helical symmetry
In this paper, we are concerned with the vanishing viscosity problem for the
three-dimensional Navier-Stokes equations with helical symmetry, in the whole
space. We choose viscosity-dependent initial \bu_0^\nu with helical swirl, an
analogue of the swirl component of axisymmetric flow, of magnitude
in the norm; we assume \bu_0^\nu \to \bu_0 in .
The new ingredient in our analysis is a decomposition of helical vector fields,
through which we obtain the required estimates.Comment: 22page
Approximation of 2D Euler Equations by the Second-Grade Fluid Equations with Dirichlet Boundary Conditions
The second-grade fluid equations are a model for viscoelastic fluids, with
two parameters: , corresponding to the elastic response, and , corresponding to viscosity. Formally setting these parameters to
reduces the equations to the incompressible Euler equations of ideal fluid
flow. In this article we study the limits of solutions of
the second-grade fluid system, in a smooth, bounded, two-dimensional domain
with no-slip boundary conditions. This class of problems interpolates between
the Euler- model (), for which the authors recently proved
convergence to the solution of the incompressible Euler equations, and the
Navier-Stokes case (), for which the vanishing viscosity limit is
an important open problem. We prove three results. First, we establish
convergence of the solutions of the second-grade model to those of the Euler
equations provided , as , extending
the main result in [19]. Second, we prove equivalence between convergence (of
the second-grade fluid equations to the Euler equations) and vanishing of the
energy dissipation in a suitably thin region near the boundary, in the
asymptotic regime ,
as . This amounts to a convergence criterion similar to the
well-known Kato criterion for the vanishing viscosity limit of the
Navier-Stokes equations to the Euler equations. Finally, we obtain an extension
of Kato's classical criterion to the second-grade fluid model, valid if , as . The proof of all these results
relies on energy estimates and boundary correctors, following the original idea
by Kato.Comment: 20pages,1figur
- …
