14,405 research outputs found

    The effect of dispersive optical phonons on the behaviour of a Holstein polaron

    Full text link
    We use the approximation-free Bold Diagrammatic Monte Carlo technique to study the effects of a finite dispersion of the optical phonon mode on the properties of the Holstein polaron, especially its effective mass. For weak electron-phonon coupling the effect is very small, but it becomes significant for moderate and large electron-phonon coupling. The effective mass is found to increase (decrease) if the phonon dispersion has a negative (positive) curvature at the centre of the Brillouin zone

    Lattice model for the surface states of a topological insulator with applications to magnetic and exciton instabilities

    Full text link
    A surface of a strong topological insulator (STI) is characterized by an odd number of linearly dispersing gapless electronic surface states. It is well known that such a surface cannot be described by an effective two-dimensional lattice model (without breaking the time-reversal symmetry), which often hampers theoretical efforts to quantitatively understand some of the properties of such surfaces, including the effect of strong disorder, interactions and various symmetry-breaking instabilities. Here we formulate a lattice model that can be used to describe a {\em pair} of STI surfaces and has an odd number of Dirac fermion states with wavefunctions localized on each surface. The Hamiltonian consists of two planar tight-binding models with spin-orbit coupling, representing the two surfaces, weakly coupled by terms that remove the extra Dirac points from the low-energy spectrum. We illustrate the utility of this model by studying the magnetic and exciton instabilities of the STI surface state driven by short-range repulsive interactions and show that this leads to results that are consistent with calculations based on the continuum model as well as three-dimensional lattice models. We expect the model introduced in this work to be widely applicable to studies of surface phenomena in STIs

    WINTER PLANT - WATER RELATIONS WITH SPECIAL REFERENCE TO ALPINE TREELINE

    Get PDF

    Simple model for post seismic ionospheric disturbances above an earthquake epicentre and along connecting magnetic field lines

    Get PDF
    The detection of ionospheric disturbances associated with seismic activity is one of the main objectives of the DEMETER micro-satellite. Its scientific payload provides a comprehensive set of electron and ion measurements. The present work describes a simple model of post-seismic disturbances in the ionosphere above the epicentre. Following a major seism, the neutral atmosphere is assumed to be subject to an acoustic pulse propagating upward, to high altitudes. By coupling this perturbation to the two-dimensional ionospheric model SAMI2 it is then possible to calculate the variations in a number of plasma parameters in the plume region and along connecting magnetic field lines, for an event of representative magnitude. The feasibility of identifying the signature of seismic events from satellite observations is then assessed in view of representative DEMETER measurements and of their natural variability

    Multiangle observations of Arctic clouds from FIRE ACE: June 3, 1998, case study

    Get PDF
    In May and June 1998 the Airborne Multiangle Imaging Spectroradiometer (AirMISR) participated in the FIRE Arctic Cloud Experiment (ACE). AirMISR is an airborne instrument for obtaining multiangle imagery similar to that of the satellite-borne MISR instrument. This paper presents a detailed analysis of the data collected on June 3, 1998. In particular, AirMISR radiance measurements are compared with measurements made by two other instruments, the Cloud Absorption Radiometer (CAR) and the MODIS airborne simulator (MAS), as well as to plane-parallel radiative transfer simulations. It is found that the AirMISR radiance measurements and albedo estimates compare favorably both with the other instruments and with the radiative transfer simulations. In addition to radiance and albedo, the multiangle AirMISR data can be used to obtain estimates of cloud top height using stereoimaging techniques. Comparison of AirMISR retrieved cloud top height (using the complete MISR-based stereoimaging approach) shows excellent agreement with the measurements from the airborne Cloud Lidar System (CLS) and ground-based millimeterwave cloud radar

    Cold Period Plant-Water Relations Affecting Consumptive Use of Soil and Wastewater Reuse

    Get PDF

    Polycyclic aromatic hydrocarbons (PAHs) in the atmospheres of two French alpine valleys: sources and temporal patterns

    Get PDF
    International audienceAlpine valleys represent some of the most important crossroads for international heavy-duty traffic in Europe, but the full impact of this traffic on air quality is not known due to a lack of data concerning these complex systems. As part of the program "Pollution des Vallées Alpines" (POVA), we performed two sampling surveys of polycyclic aromatic hydrocarbons (PAHs) in two sensitive valleys: the Chamonix and Maurienne Valleys, between France and Italy. Sampling campaigns were performed during the summer of 2000 and the winter of 2001, with both periods taking place during the closure of the "Tunnel du Mont-Blanc". The first objective of this paper is to describe the relations between PAH concentrations, external parameters (sampling site localization, meteorological parameters, sources), and aerosol characteristics, including its carbonaceous fraction (OC and EC). The second objective is to study the capacity of PAH profiles to accurately distinguish the different emission sources. Temporal evolution of the relative concentration of an individual PAH (CHR) and the PAH groups BghiP+COR and BbF+BkF is studied in order to differentiate wood combustion, gasoline, and diesel emissions, respectively. The results show that the total particulate PAH concentrations were higher in the Chamonix valley during both seasons, despite the cessation of international traffic. Seasonal cycles, with higher concentrations in winter, are also stronger in this valley. During winter, particulate PAH concentration can reach very high levels (up to 155 ng.m-3) in this valley during cold anticyclonic periods. The examination of sources shows the impact during summer of heavy-duty traffic in the Maurienne valley and of gasoline vehicles in the Chamonix valley. During winter, Chamonix is characterized by the strong influence of wood combustion in residential fireplaces, even if the temporal evolution of specific PAH ratios are difficult to interpret. Information on sources given by PAH profiles can only be considered in qualitative terms
    corecore