15,545 research outputs found
Origin of the quasi-universality of the graphene minimal conductivity
It is a fact that the minimal conductivity of most graphene
samples is larger than the well-established universal value for ideal graphene
; in particular, larger by a factor . Despite intense
theoretical activity, this fundamental issue has eluded an explanation so far.
Here we present fully atomistic quantum mechanical estimates of the graphene
minimal conductivity where electron-electron interactions are considered in the
framework of density functional theory. We show the first conclusive evidence
of the dominant role on the minimal conductivity of charged impurities over
ripples, which have no visible effect. Furthermore, in combination with the
logarithmic scaling law for diffusive metallic graphene, we ellucidate the
origin of the ubiquitously observed minimal conductivity in the range .Comment: 6 pages, expanded version to appear in PR
Transport in magnetically ordered Pt nanocontacts
Pt nanocontacts, like those formed in mechanically controlled break
junctions, are shown to develop spontaneous local magnetic order. Our density
functional calculations predict that a robust local magnetic order exists in
the atoms presenting low coordination, i. e., those forming the atom-sized
neck. In contrast to previous work, we thus find that the electronic transport
can be spin-polarized, although the net value of the conductance still agrees
with available experimental information. Experimental implications of the
formation of this new type of nanomagnet are discussed.Comment: 4 pages, 3 figure
Critical comparison of electrode models in density functional theory based quantum transport calculations
We study the performance of two different electrode models in quantum
transport calculations based on density functional theory: Parametrized Bethe
lattices and quasi-one dimensional wires or nanowires. A detailed account of
implementation details in both cases is given. From the systematic study of
nanocontacts made of representative metallic elements, we can conclude that
parametrized electrode models represent an excellent compromise between
computational cost and electronic structure definition as long as the aim is to
compare with experiments where the precise atomic structure of the electrodes
is not relevant or defined with precision. The results obtained using
parametrized Bethe lattices are essentially similar to the ones obtained with
quasi one dimensional electrodes for large enough sections of these, adding a
natural smearing to the transmission curves that mimics the true nature of
polycrystalline electrodes. The latter are more demanding from the
computational point of view, but present the advantage of expanding the range
of applicability of transport calculations to situations where the electrodes
have a well-defined atomic structure, as is case for carbon nanotubes, graphene
nanoribbons or semiconducting nanowires. All the analysis is done with the help
of codes developed by the authors which can be found in the quantum transport
toolbox Alacant and are publicly available.Comment: 17 pages, 12 figure
Kondo effect and spin quenching in high-spin molecules on metal substrates
Using a state-of-the art combination of density functional theory and
impurity solver techniques we present a complete and parameter-free picture of
the Kondo effect in the high-spin () coordination complex known as
Manganese Phthalocyanine adsorbed on the Pb(111) surface. We calculate the
correlated electronic structure and corresponding tunnel spectrum and find an
asymmetric Kondo resonance, as recently observed in experiments. Contrary to
previous claims, the Kondo resonance stems from only one of three possible
Kondo channels with origin in the Mn 3d-orbitals, its peculiar asymmetric shape
arising from the modulation of the hybridization due to strong coupling to the
organic ligand. The spectral signature of the second Kondo channel is strongly
suppressed as the screening occurs via the formation of a many-body singlet
with the organic part of the molecule. Finally, a spin-1/2 in the 3d-shell
remains completely unscreened due to the lack of hybridization of the
corresponding orbital with the substrate, hence leading to a spin-3/2
underscreened Kondo effect.Comment: 5 pages, 2 figure
Spin-transfer torque on a single magnetic adatom
We theoretically show how the spin orientation of a single magnetic adatom
can be controlled by spin polarized electrons in a scanning tunneling
microscope configuration. The underlying physical mechanism is spin assisted
inelastic tunneling. By changing the direction of the applied current, the
orientation of the magnetic adatom can be completely reversed on a time scale
that ranges from a few nanoseconds to microseconds, depending on bias and
temperature. The changes in the adatom magnetization direction are, in turn,
reflected in the tunneling conductance.Comment: 5 pages, 3 figure
A critical analysis of vacancy-induced magnetism in mono and bilayer graphene
The observation of intrinsic magnetic order in graphene and graphene-based
materials relies on the formation of magnetic moments and a sufficiently strong
mutual interaction. Vacancies are arguably considered the primary source of
magnetic moments. Here we present an in-depth density functional theory study
of the spin-resolved electronic structure of (monoatomic) vacancies in graphene
and bilayer graphene. We use two different methodologies: supercell
calculations with the SIESTA code and cluster-embedded calculations with the
ALACANT package. Our results are conclusive: The vacancy-induced extended
magnetic moments, which present long-range interactions and are capable of
magnetic ordering, vanish at any experimentally relevant vacancy concentration.
This holds for -bond passivated and un-passivated reconstructed
vacancies, although, for the un-passivated ones, the disappearance of the
magnetic moments is accompanied by a very large magnetic susceptibility. Only
for the unlikely case of a full -bond passivation, preventing the
reconstruction of the vacancy, a full value of 1 for the extended
magnetic moment is recovered for both mono and bilayer cases. Our results put
on hold claims of vacancy-induced ferromagnetic or antiferromagnetic order in
graphene-based systems, while still leaving the door open to -type
paramagnetism.Comment: Submitted to Phys. Rev B, 9 page
Entanglement in a second order quantum phase transition
We consider a system of mutually interacting spin 1/2 embedded in a
transverse magnetic field which undergo a second order quantum phase
transition. We analyze the entanglement properties and the spin squeezing of
the ground state and show that, contrarily to the one-dimensional case, a
cusp-like singularity appears at the critical point , in the
thermodynamic limit. We also show that there exists a value above which the ground state is not spin squeezed despite a
nonvanishing concurrence.Comment: 4 pages, 4 EPS figures, minor corrections added and title change
Entanglement dynamics in the Lipkin-Meshkov-Glick model
The dynamics of the one-tangle and the concurrence is analyzed in the
Lipkin-Meshkov-Glick model which describes many physical systems such as the
two-mode Bose-Einstein condensates. We consider two different initial states
which are physically relevant and show that their entanglement dynamics are
very different. A semiclassical analysis is used to compute the one-tangle
which measures the entanglement of one spin with all the others, whereas the
frozen-spin approximation allows us to compute the concurrence using its
mapping onto the spin squeezing parameter.Comment: 11 pages, 11 EPS figures, published versio
- …
