707,289 research outputs found
Interatomic collisions in two-dimensional and quasi-two-dimensional confinements with spin-orbit coupling
We investigate the low-energy scattering and bound states of two
two-component fermionic atoms in pure two-dimensional (2D) and quasi-2D
confinements with Rashba spin-orbit coupling (SOC). We find that the SOC
qualitatively changes the behavior of the 2D scattering amplitude in the
low-energy limit. For quasi-2D systems we obtain the analytic expression for
the effective-2D scattering amplitude and the algebraic equations for the
two-atom bound state energy. Based on these results, we further derive the
effective 2D interaction potential between two ultracold atoms in the quasi-2D
confinement with Rashba SOC. These results are crucial for the control of the
2D effective physics in quasi-2D geometry via the confinement intensity and the
atomic three-dimensional scattering length.Comment: 13pages, 5 figure
Phase Winding a Two-Component BEC in an Elongated Trap: Experimental Observation of Moving Magnetic Orders and Dark-bright Solitons
We experimentally investigate the phase winding dynamics of a harmonically
trapped two-component BEC subject to microwave induced Rabi oscillations
between two pseudospin components. While the single particle dynamics can be
explained by mapping the system to a two-component Bose-Hubbard model,
nonlinearities due to the interatomic repulsion lead to new effects observed in
the experiments: In the presence of a linear magnetic field gradient, a
qualitatively stable moving magnetic order that is similar to antiferromagnetic
order is observed after critical winding is achieved. We also demonstrate how
the phase winding can be used as a new tool to generate copious dark-bright
solitons in a two-component BEC, opening the door for new experimental studies
of these nonlinear features.Comment: 5 pages, 4 figure
Momentum relaxation due to polar optical phonons in AlGaN/GaN heterostructures
Using the dielectric continuum (DC) model, momentum relaxation rates are calculated for electrons confined in quasi-two-dimensional (quasi-2D) channels of AlGaN/GaN heterostructures. Particular attention is paid to the effects of half-space and interface modes on the momentum relaxation. The total momentum relaxation rates are compared with those evaluated by the three-dimensional phonon (3DP) model, and also with the Callen results for bulk GaN. In heterostructures with a wide channel (effective channel width >100 Å), the DC and 3DP models yield very close momentum relaxation rates. Only for narrow-channel heterostructures do interface phonons become important in momentum relaxation processes, and an abrupt threshold occurs for emission of interface as well as half-space phonons. For a 30-Å GaN channel, for instance, the 3DP model is found to underestimate rates just below the bulk phonon energy by 70% and overestimate rates just above the bulk phonon energy by 40% compared to the DC model. Owing to the rapid decrease in the electron-phonon interaction with the phonon wave vector, negative momentum relaxation rates are predicted for interface phonon absorption in usual GaN channels. The total rates remain positive due to the dominant half-space phonon scattering. The quasi-2D rates can have substantially higher peak values than the three-dimensional rates near the phonon emission threshold. Analytical expressions for momentum relaxation rates are obtained in the extreme quantum limits (i.e., the threshold emission and the near subband-bottom absorption). All the results are well explained in terms of electron and phonon densities of states
The Galactic distribution of magnetic fields in molecular clouds and HII regions
{Magnetic fields exist on all scales in our Galaxy. There is a controversy
about whether the magnetic fields in molecular clouds are preserved from the
permeated magnetic fields in the interstellar medium (ISM) during cloud
formation. We investigate this controversy using available data in the light of
the newly revealed magnetic field structure of the Galactic disk obtained from
pulsar rotation measures (RMs).} % {We collected measurements of the magnetic
fields in molecular clouds, including Zeeman splitting data of OH masers in
clouds and OH or HI absorption or emission lines of clouds themselves.} % {The
Zeeman data show structures in the sign distribution of the line-of-sight
component of the magnetic field. Compared to the large-scale Galactic magnetic
fields derived from pulsar RMs, the sign distribution of the Zeeman data shows
similar large-scale field reversals. Previous such examinations were flawed in
the over-simplified global model used for the large-scale magnetic fields in
the Galactic disk.} % {We conclude that the magnetic fields in the clouds may
still ``remember'' the directions of magnetic fields in the Galactic ISM to
some extent, and could be used as complementary tracers of the large-scale
magnetic structure. More Zeeman data of OH masers in widely distributed clouds
are required.}Comment: Typo fixed in this new versio
Multiband Emission from Pulsar Wind Nebulae: A Possible Injection Spectrum
A recent research shows that particles with a spectrum of a relativistic
Maxwellian plus a high-energy tail can be accelerated by relativistic
collisionless shocks. We investigate the possibility of the high-energy
particles with this new spectrum injected in pulsar wind nebulae (PWNe) from
the terminate shock based on the study of multiwavelength emission from PWNe.}
{The dynamics of a supernova remnant (SNR) and multiband nonthermal emission
from the PWN inside the remnant are investigated using a dynamical model with
electrons/positrons injected with the new spectrum. In this model, the
dynamical and radiative evolution of a pulsar wind nebula in a non-radiative
supernova remnant can be self-consistently described.} {This model is applied
to the three composite SNRs, G0.9+0.1, MSH 15-52, G338.3-0.0, and the multiband
observed emission from the three PWNe can be well reproduced.} {Our studies on
the three remnant provide evidence for the new spectrum of the particles, which
are accelerated by the terminate shock, injected into a PWN.Comment: 9 pages, 9 figures, accepted by A&
- …
