14,798 research outputs found
Line identification studies using traditional techniques and wavelength coincidence statistics
Traditional line identification techniques result in the assignment of individual lines to an atomic or ionic species. These methods may be supplemented by wavelength coincidence statistics (WCS). The strength and weakness of these methods are discussed using spectra of a number of normal and peculiar B and A stars that have been studied independently by both methods. The present results support the overall findings of some earlier studies. WCS would be most useful in a first survey, before traditional methods have been applied. WCS can quickly make a global search for all species and in this way may enable identifications of an unexpected spectrum that could easily be omitted entirely from a traditional study. This is illustrated by O I. WCS is a subject to well known weakness of any statistical technique, for example, a predictable number of spurious results are to be expected. The danger of small number statistics are illustrated. WCS is at its best relative to traditional methods in finding a line-rich atomic species that is only weakly present in a complicated stellar spectrum
Elemental abundances of mercury-manganese stars and the population 2 type star HD 109995
Ultraviolet and optical data for the Hg Mn stars Coronae Borealis and Cancri is being combined with data for the field horizontal branch population II star HD 109995 in order to derive the element abundances in their photospheres. Data collected by IUE is being utilized
Selecting step sizes in sensitivity analysis by finite differences
This paper deals with methods for obtaining near-optimum step sizes for finite difference approximations to first derivatives with particular application to sensitivity analysis. A technique denoted the finite difference (FD) algorithm, previously described in the literature and applicable to one derivative at a time, is extended to the calculation of several simultaneously. Both the original and extended FD algorithms are applied to sensitivity analysis for a data-fitting problem in which derivatives of the coefficients of an interpolation polynomial are calculated with respect to uncertainties in the data. The methods are also applied to sensitivity analysis of the structural response of a finite-element-modeled swept wing. In a previous study, this sensitivity analysis of the swept wing required a time-consuming trial-and-error effort to obtain a suitable step size, but it proved to be a routine application for the extended FD algorithm herein
Lanthanides and other spectral oddities in a Centauri
Context: There is considerable interest in the helium variable a Cen as a
bridge between helium-weak and helium-strong CP stars. Aims: We investigate Ce
III and other possible lanthanides in the spectrum the of hottest chemically
peculiar (CP) star in which these elements have been found. A {Kr II line
appears within a broad absorption which we suggest may be due to a high-level
transition in C II. Methods: Wavelengths and equivalent widths are measured on
high-resolution UVES spectra, analyzed, and their phase-variations
investigated. Results: New, robust identifications of Ce III and Kr II are
demonstrated. Nd III is likely present. A broad absorption near 4619[A] is
present at all phases of a Cen, and in some other early B stars. Conclusions:
The presence of lanthanides in a Cen strengthens the view that this star is a
significant link between the cooler CP stars and the hotter helium-peculiar
stars. Broad absorptions in a Cen are not well explained.Comment: Research Note accepted by Astronomy and Astrophysics; 4 pages, 4
Figs. 2 Table
Some aspects of algorithm performance and modeling in transient analysis of structures
The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit algorithms with variable time steps, known as the GEAR package, is described. Four test problems, used for evaluating and comparing various algorithms, were selected and finite-element models of the configurations are described. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system, and a model of the wing of the space shuttle orbiter. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures)
Senstitivty analysis and optimization of nodal point placement for vibration reduction
A method is developed for sensitivity analysis and optimization of nodal point locations in connection with vibration reduction. A straightforward derivation of the expression for the derivative of nodal locations is given, and the role of the derivative in assessing design trends is demonstrated. An optimization process is developed which uses added lumped masses on the structure as design variables to move the node to a preselected location - for example, where low response amplitude is required or to a point which makes the mode shape nearly orthogonal to the force distribution, thereby minimizing the generalized force. The optimization formulation leads to values for added masses that adjust a nodal location while minimizing the total amount of added mass required to do so. As an example, the node of the second mode of a cantilever box beam is relocated to coincide with the centroid of a prescribed force distribution, thereby reducing the generalized force substantially without adding excessive mass. A comparison with an optimization formulation that directly minimizes the generalized force indicates that nodal placement gives essentially a minimum generalized force when the node is appropriately placed
The Limits of Liability in Promoting Safe Geologic Sequestration of CO2
Deployment of new technologies is vital to climate change policy, but it invariably poses difficult tradeoffs. Carbon capture and storage (“CCS”), which involves the capture and permanent burial of CO2 emissions, exemplifies this problem. This article provides an overview of CCS in Part I, focusing on geologic sequestration, and analyzes the scientific work on the potential for releases of CO2 and brine from sequestrian reservoirs. Part II evaluates the comparative advantages of government regulation and common law liability. Part III examines the relative efficiencies of different doctrines of common law liability when applied to likely releases from sequestrian sites. The authors propose a hybrid legal framework in Part IV that combines a traditional regulatory regime with a novel two-tiered system of liability that is calibrated to objective site characteristics.The Kay Bailey Hutchison Center for Energy, Law, and Busines
- …
