367 research outputs found

    R-matrix theory of driven electromagnetic cavities

    Full text link
    Resonances of cylindrical symmetric microwave cavities are analyzed in R-matrix theory which transforms the input channel conditions to the output channels. Single and interfering double resonances are studied and compared with experimental results, obtained with superconducting microwave cavities. Because of the equivalence of the two-dimensional Helmholtz and the stationary Schroedinger equations, the results present insight into the resonance structure of regular and chaotic quantum billiards.Comment: Revtex 4.

    Phase shift experiments identifying Kramers doublets in a chaotic superconducting microwave billiard of threefold symmetry

    Full text link
    The spectral properties of a two-dimensional microwave billiard showing threefold symmetry have been studied with a new experimental technique. This method is based on the behavior of the eigenmodes under variation of a phase shift between two input channels, which strongly depends on the symmetries of the eigenfunctions. Thereby a complete set of 108 Kramers doublets has been identified by a simple and purely experimental method. This set clearly shows Gaussian unitary ensemble statistics, although the system is time-reversal invariant.Comment: RevTex 4, 5 figure

    Transition from Gaussian-orthogonal to Gaussian-unitary ensemble in a microwave billiard with threefold symmetry

    Full text link
    Recently it has been shown that time-reversal invariant systems with discrete symmetries may display in certain irreducible subspaces spectral statistics corresponding to the Gaussian unitary ensemble (GUE) rather than to the expected orthogonal one (GOE). A Kramers type degeneracy is predicted in such situations. We present results for a microwave billiard with a threefold rotational symmetry and with the option to display or break a reflection symmetry. This allows us to observe the change from GOE to GUE statistics for one subset of levels. Since it was not possible to separate the three subspectra reliably, the number variances for the superimposed spectra were studied. The experimental results are compared with a theoretical and numerical study considering the effects of level splitting and level loss

    Self-pulsing effect in chaotic scattering

    Full text link
    We study the quantum and classical scattering of Hamiltonian systems whose chaotic saddle is described by binary or ternary horseshoes. We are interested in parameters of the system for which a stable island, associated with the inner fundamental periodic orbit of the system exists and is large, but chaos around this island is well developed. In this situation, in classical systems, decay from the interaction region is algebraic, while in quantum systems it is exponential due to tunneling. In both cases, the most surprising effect is a periodic response to an incoming wave packet. The period of this self-pulsing effect or scattering echoes coincides with the mean period, by which the scattering trajectories rotate around the stable orbit. This period of rotation is directly related to the development stage of the underlying horseshoe. Therefore the predicted echoes will provide experimental access to topological information. We numerically test these results in kicked one dimensional models and in open billiards.Comment: Submitted to New Journal of Physics. Two movies (not included) and full-resolution figures are available at http://www.cicc.unam.mx/~mejia

    Analysis technique for exceptional points in open quantum systems and QPT analogy for the appearance of irreversibility

    Full text link
    We propose an analysis technique for the exceptional points (EPs) occurring in the discrete spectrum of open quantum systems (OQS), using a semi-infinite chain coupled to an endpoint impurity as a prototype. We outline our method to locate the EPs in OQS, further obtaining an eigenvalue expansion in the vicinity of the EPs that gives rise to characteristic exponents. We also report the precise number of EPs occurring in an OQS with a continuum described by a quadratic dispersion curve. In particular, the number of EPs occurring in a bare discrete Hamiltonian of dimension nDn_\textrm{D} is given by nD(nD1)n_\textrm{D} (n_\textrm{D} - 1); if this discrete Hamiltonian is then coupled to continuum (or continua) to form an OQS, the interaction with the continuum generally produces an enlarged discrete solution space that includes a greater number of EPs, specifically 2nC(nC+nD)[2nC(nC+nD)1]2^{n_\textrm{C}} (n_\textrm{C} + n_\textrm{D}) [2^{n_\textrm{C}} (n_\textrm{C} + n_\textrm{D}) - 1] , in which nCn_\textrm{C} is the number of (non-degenerate) continua to which the discrete sector is attached. Finally, we offer a heuristic quantum phase transition analogy for the emergence of the resonance (giving rise to irreversibility via exponential decay) in which the decay width plays the role of the order parameter; the associated critical exponent is then determined by the above eigenvalue expansion.Comment: 16 pages, 7 figure

    Resonance scattering and singularities of the scattering function

    Full text link
    Recent studies of transport phenomena with complex potentials are explained by generic square root singularities of spectrum and eigenfunctions of non-Hermitian Hamiltonians. Using a two channel problem we demonstrate that such singularities produce a significant effect upon the pole behaviour of the scattering matrix, and more significantly upon the associated residues. This mechanism explains why by proper choice of the system parameters the resonance cross section is increased drastically in one channel and suppressed in the other channel.Comment: 4 pages, 3 figure

    Effective Hamiltonian and unitarity of the S matrix

    Full text link
    The properties of open quantum systems are described well by an effective Hamiltonian H{\cal H} that consists of two parts: the Hamiltonian HH of the closed system with discrete eigenstates and the coupling matrix WW between discrete states and continuum. The eigenvalues of H{\cal H} determine the poles of the SS matrix. The coupling matrix elements W~kcc\tilde W_k^{cc'} between the eigenstates kk of H{\cal H} and the continuum may be very different from the coupling matrix elements WkccW_k^{cc'} between the eigenstates of HH and the continuum. Due to the unitarity of the SS matrix, the \TW_k^{cc'} depend on energy in a non-trivial manner, that conflicts with the assumptions of some approaches to reactions in the overlapping regime. Explicit expressions for the wave functions of the resonance states and for their phases in the neighbourhood of, respectively, avoided level crossings in the complex plane and double poles of the SS matrix are given.Comment: 17 pages, 7 figure

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This paper develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error correction performance, high rates, and low decoding complexity. The proposed method produces infinitely many new codes with a wide variety of parameters and entanglement requirements. Our framework encompasses various codes including the previously known entanglement-assisted quantum LDPC codes having the best error correction performance and many new codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review

    Experimental Test of a Trace Formula for a Chaotic Three Dimensional Microwave Cavity

    Full text link
    We have measured resonance spectra in a superconducting microwave cavity with the shape of a three-dimensional generalized Bunimovich stadium billiard and analyzed their spectral fluctuation properties. The experimental length spectrum exhibits contributions from periodic orbits of non-generic modes and from unstable periodic orbit of the underlying classical system. It is well reproduced by our theoretical calculations based on the trace formula derived by Balian and Duplantier for chaotic electromagnetic cavities.Comment: 4 pages, 5 figures (reduced quality

    First experimental evidence for quantum echoes in scattering systems

    Full text link
    A self-pulsing effect termed quantum echoes has been observed in experiments with an open superconducting and a normal conducting microwave billiard whose geometry provides soft chaos, i.e. a mixed phase space portrait with a large stable island. For such systems a periodic response to an incoming pulse has been predicted. Its period has been associated to the degree of development of a horseshoe describing the topology of the classical dynamics. The experiments confirm this picture and reveal the topological information.Comment: RevTex 4.0, 5 eps-figure
    corecore