1,519 research outputs found
Non-uniqueness in conformal formulations of the Einstein constraints
Standard methods in non-linear analysis are used to show that there exists a
parabolic branching of solutions of the Lichnerowicz-York equation with an
unscaled source. We also apply these methods to the extended conformal thin
sandwich formulation and show that if the linearised system develops a kernel
solution for sufficiently large initial data then we obtain parabolic solution
curves for the conformal factor, lapse and shift identical to those found
numerically by Pfeiffer and York. The implications of these results for
constrained evolutions are discussed.Comment: Arguments clarified and typos corrected. Matches published versio
Gating-by-tilt of mechanosensitive membrane channels
We propose an alternative mechanism for the gating of biological membrane
channels in response to membrane tension that involves a change in the slope of
the membrane near the channel. Under biological membrane tensions we show that
the energy difference between the closed (tilted) and open (untilted) states
can far exceed kBT and is comparable to what is available under simple
ilational gating. Recent experiments demonstrate that membrane leaflet
asymmetries (spontaneous curvature) can strong effect the gating of some
channels. Such a phenomenon would be more easy to explain under gating-by-tilt,
given its novel intrinsic sensitivity to such asymmetry.Comment: 10 pages, 2 figure
Initial data for fluid bodies in general relativity
We show that there exist asymptotically flat almost-smooth initial data for
Einstein-perfect fluid's equation that represent an isolated liquid-type body.
By liquid-type body we mean that the fluid energy density has compact support
and takes a strictly positive constant value at its boundary. By almost-smooth
we mean that all initial data fields are smooth everywhere on the initial
hypersurface except at the body boundary, where tangential derivatives of any
order are continuous at that boundary.
PACS: 04.20.Ex, 04.40.Nr, 02.30.JrComment: 38 pages, LaTeX 2e, no figures. Accepted for publication in Phys.
Rev.
Adsorption models of hybridization and post-hybridisation behaviour on oligonucleotide microarrays
Analysis of data from an Affymetrix Latin Square spike-in experiment
indicates that measured fluorescence intensities of features on an
oligonucleotide microarray are related to spike-in RNA target concentrations
via a hyperbolic response function, generally identified as a Langmuir
adsorption isotherm. Furthermore the asymptotic signal at high spike-in
concentrations is almost invariably lower for a mismatch feature than for its
partner perfect match feature. We survey a number of theoretical adsorption
models of hybridization at the microarray surface and find that in general they
are unable to explain the differing saturation responses of perfect and
mismatch features. On the other hand, we find that a simple and consistent
explanation can be found in a model in which equilibrium hybridization followed
by partial dissociation of duplexes during the post-hybridization washing
phase.Comment: 26 pages, 6 figures, some rearrangement of sections and some
additions. To appear in J.Phys.(condensed matter
On rationality of the intersection points of a line with a plane quartic
We study the rationality of the intersection points of certain lines and
smooth plane quartics C defined over F_q. For q \geq 127, we prove the
existence of a line such that the intersection points with C are all rational.
Using another approach, we further prove the existence of a tangent line with
the same property as soon as the characteristic of F_q is different from 2 and
q \geq 66^2+1. Finally, we study the probability of the existence of a rational
flex on C and exhibit a curious behavior when the characteristic of F_q is
equal to 3.Comment: 17 pages. Theorem 2 now includes the characteristic 2 case;
Conjecture 1 from the previous version is proved wron
Modulation of emotional appraisal by false physiological feedback during fMRI
BACKGROUND
James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined.
METHODOLOGY/PRINCIPAL FINDINGS
We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level.
CONCLUSIONS/SIGNIFICANCE
Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state
Modulation of emotional appraisal by false physiological feedback during fMRI
BACKGROUND
James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined.
METHODOLOGY/PRINCIPAL FINDINGS
We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level.
CONCLUSIONS/SIGNIFICANCE
Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state
Ligand-Receptor Interactions
The formation and dissociation of specific noncovalent interactions between a
variety of macromolecules play a crucial role in the function of biological
systems. During the last few years, three main lines of research led to a
dramatic improvement of our understanding of these important phenomena. First,
combination of genetic engineering and X ray cristallography made available a
simultaneous knowledg of the precise structure and affinity of series or
related ligand-receptor systems differing by a few well-defined atoms. Second,
improvement of computer power and simulation techniques allowed extended
exploration of the interaction of realistic macromolecules. Third, simultaneous
development of a variety of techniques based on atomic force microscopy,
hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or
flexible transducers yielded direct experimental information of the behavior of
single ligand receptor bonds. At the same time, investigation of well defined
cellular models raised the interest of biologists to the kinetic and mechanical
properties of cell membrane receptors. The aim of this review is to give a
description of these advances that benefitted from a largely multidisciplinar
approach
A cognitive science analysis of the Quaker Business Method: is how it works why it works?
The Quaker Business Method (QBM) has been in development for over 300 years. Quakers believe that the QBM is an effective means for making decisions. This paper develops a tripartite theoretical framework to analyze the QBM in order to examine its efficacy, both in terms of the quality of its processes and the morality of its decisions. The framework encompasses: (1) a decomposition of the QBM as a set of tools; (2) a selection of theories and models from cognitive science that explain how humans think; (3) a set of relational models that can be used to objectively judge the morality of different forms of human
behavioural interactions. Overall, it appears that QBM tools may counter the deficits in natural human abilities to reason and solve problems, and that they may promote decision making practices that are moral and that the resulting decisions, themselves, may be moral
- …
