461 research outputs found
NLO Simulations of Chargino Production at the ILC
We present an extension of the Monte Carlo Event Generator Whizard which
includes chargino production at the ILC at NLO. We present two ways of adding
photonic contributions. We present results for cross sections and event
generation.Comment: 4 pages, to appear in Proceedings of SUSY06, the 14th International
Conference on Supersymmetry and the Unification of Fundamental Interactions,
UC Irvine, California, 12-17 June 200
Next-to-leading order predictions for WW+jet production
In this work we report on a next-to-leading order calculation of WW + jet
production at hadron colliders, with subsequent leptonic decays of the W-bosons
included. The calculation of the one-loop contributions is performed using
generalized unitarity methods in order to derive analytic expressions for the
relevant amplitudes. These amplitudes have been implemented in the parton-level
Monte Carlo generator MCFM, which we use to provide a complete next-to-leading
order calculation. Predictions for total cross-sections, as well as
differential distributions for several key observables, are computed both for
the LHC operating at 14 TeV as well as for a possible future 100 TeV
proton-proton collider.Comment: 14 pages, 7 figures; v2: several references added, 2 typos corrected.
Corresponds to published journal versio
Nagy-Soper subtraction scheme for multiparton final states
In this work, we present the extension of an alternative subtraction scheme
for next-to-leading order QCD calculations to the case of an arbitrary number
of massless final-state partons. The scheme is based on the splitting kernels
of an improved parton shower and comes with a reduced number of final state
momentum mappings. While a previous publication including the setup of the
scheme has been restricted to cases with maximally two massless partons in the
final state, we here provide the final state real emission and integrated
subtraction terms for processes with any number of massless partons. We apply
our scheme to three jet production at lepton colliders at next-to-leading order
and present results for the differential C parameter distribution.Comment: 45 pages, 5 figures v2: several references added; v3: title changed,
references and a discussion of further scaling improvement added. Corresponds
to published journal versio
JUNO Conceptual Design Report
The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine
the neutrino mass hierarchy using an underground liquid scintillator detector.
It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants
in Guangdong, China. The experimental hall, spanning more than 50 meters, is
under a granite mountain of over 700 m overburden. Within six years of running,
the detection of reactor antineutrinos can resolve the neutrino mass hierarchy
at a confidence level of 3-4, and determine neutrino oscillation
parameters , , and to
an accuracy of better than 1%. The JUNO detector can be also used to study
terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard
Model. The central detector contains 20,000 tons liquid scintillator with an
acrylic sphere of 35 m in diameter. 17,000 508-mm diameter PMTs with high
quantum efficiency provide 75% optical coverage. The current choice of
the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO
as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of
detected photoelectrons per MeV is larger than 1,100 and the energy resolution
is expected to be 3% at 1 MeV. The calibration system is designed to deploy
multiple sources to cover the entire energy range of reactor antineutrinos, and
to achieve a full-volume position coverage inside the detector. The veto system
is used for muon detection, muon induced background study and reduction. It
consists of a Water Cherenkov detector and a Top Tracker system. The readout
system, the detector control system and the offline system insure efficient and
stable data acquisition and processing.Comment: 328 pages, 211 figure
(N)LO Simulation of Chargino Production and Decay
We consider NLO chargino production and decays at the ILC. For this, we
present an NLO extension of the Monte Carlo Event Generator Whizard including
the NLO production. For photonic corrections, we use both a fixed order and a
resummation approach. The latter method evades the problem of negative event
weights and automatically includes leading higher order corrections. We present
results for cross sections and event generation for both methods. As a first
step towards a full NLO Monte Carlo, we consider a LO implementation of the
chargino production and subsequent leptonic decay and investigate the precision
of the sneutrino mass determination by means of lepton energy distributions in
chargino decays. The SM and SUSY backgrounds are included in our study using
full matrix elements as well as smearing effects from ISR and beamstrahlung.
Without using energy distribution fits, the sneutrino mass can be determined
with an error in the percent regime.Comment: 10 pages, 6 figures; Talk presented at the Cracow Epiphany Conference
on LHC Physics 2008; Submitted to Acta Physica Polonica
New Physics at the LHC. A Les Houches Report: Physics at TeV Colliders 2009 - New Physics Working Group
We present a collection of signatures for physics beyond the standard model
that need to be explored at the LHC. First, are presented various tools
developed to measure new particle masses in scenarios where all decays include
an unobservable particle. Second, various aspects of supersymmetric models are
discussed. Third, some signatures of models of strong electroweak symmetry are
discussed. In the fourth part, a special attention is devoted to high mass
resonances, as the ones appearing in models with warped extra dimensions.
Finally, prospects for models with a hidden sector/valley are presented. Our
report, which includes brief experimental and theoretical reviews as well as
original results, summarizes the activities of the "New Physics" working group
for the "Physics at TeV Colliders" workshop (Les Houches, France, 8-26 June,
2009).Comment: 189 page
Does zero temperature decide on the nature of the electroweak phase transition?
Taking on a new perspective of the electroweak phase transition, we investigate in detail the role played by the depth of the electroweak minimum (“vacuum energy difference”). We find a strong correlation between the vacuum energy difference and the strength of the phase transition. This correlation only breaks down if a negative eigen-value develops upon thermal corrections in the squared scalar mass matrix in the broken vacuum before the critical temperature. As a result the scalar fields slide across field space toward the symmetric vacuum, often causing a significantly weakened phase transition. Phenomenological constraints are found to strongly disfavour such sliding scalar scenarios. For several popular models, we suggest numerical bounds that guarantee a strong first order electroweak phase transition. The zero temperature phenomenology can then be studied in these parameter regions without the need for any finite temperature calculations. For almost all non-supersymmetric models with phenomenologically viable parameter points, we find a strong phase transition is guaranteed if the vacuum energy difference is greater than −8.8 × 107 GeV4. For the GNMSSM, we guarantee a strong phase transition for phenomenologically viable parameter points if the vacuum energy difference is greater than −6.9×107 GeV4. Alternatively, we capture more of the parameter space exhibiting a strong phase transition if we impose a simultaneous bound on the vacuum energy difference and the singlet mass
Less-simplified models of dark matter for direct detection and the LHC
We construct models of dark matter with suppressed spin-independent scattering cross section utilizing the existing simplified model framework. Even simple combinations of simplified models can exhibit interference effects that cause the tree level contribution to the scattering cross section to vanish, thus demonstrating that direct detection limits on simplified models are not robust when embedded in a more complicated and realistic framework. In general for fermionic WIMP masses ≳ 10 GeV direct detection limits on the spin-independent scattering cross section are much stronger than those coming from the LHC. However these model combinations, which we call less-simplified models, represent situations where LHC searches become more competitive than direct detection experiments even for moderate dark matter mass. We show that a complementary use of several searches at the LHC can strongly constrain the direct detection blind spots by setting limits on the coupling constants and mediators’ mass. We derive the strongest limits for combinations of vector + scalar, vector + “squark”, and “squark” + scalar mediator, and present the corresponding projections for the LHC 14 TeV for a number of searches: mono-jet, jets + missing energy, and searches for heavy vector resonances
Interpreting a 750 GeV diphoton resonance
We discuss the implications of the significant excesses in the diphoton final
state observed by the LHC experiments ATLAS and CMS around a diphoton invariant
mass of 750 GeV. The interpretation of the excess as a spin-zero s-channel resonance implies
model-independent lower bounds on both its branching ratio and its coupling to photons,
which stringently constrain dynamical models. We consider both the case where the
excess is described by a narrow and a broad resonance. We also obtain model-independent
constraints on the allowed couplings and branching fractions to final states other than
diphotons, by including the interplay with 8 TeV searches. These results can guide attempts
to construct viable dynamical models of the resonance. Turning to specific models,
our findings suggest that the anomaly cannot be accounted for by the presence of only an
additional singlet or doublet spin-zero field and the Standard Model degrees of freedom; this
includes all two-Higgs-doublet models. Likewise, heavy scalars in the MSSM cannot explain
the excess if stability of the electroweak vacuum is required, at least in a leading-order analysis.
If we assume that the resonance is broad we find that it is challenging to find a weakly
coupled explanation. However, we provide an existence proof in the form of a model with
vectorlike quarks with large electric charge that is perturbative up to the 100 TeV scale.
For the narrow-resonance case a similar model can be perturbative up to high scales also
with smaller charges. We also find that, in their simplest form, dilaton models cannot
explain the size of the excess. Some implications for flavor physics are briefly discussed
- …
