16,543 research outputs found

    Pion Propagation near the QCD Chiral Phase Transition

    Get PDF
    We point out that, in analogy with spin waves in antiferromagnets, all parameters describing the real-time propagation of soft pions at temperatures below the QCD chiral phase transition can be expressed in terms of static correlators. This allows, in principle, the determination of the soft pion dispersion relation on the lattice. Using scaling and universality arguments, we determine the critical behavior of the parameters of pion propagation. We predict that when the critical temperature is approached from below, the pole mass of the pion drops despite the growth of the pion screening mass. This fact is attributed to the decrease of the pion velocity near the phase transition.Comment: 8 pages (single column), RevTeX; added references, version to be published in PR

    Charged and superconducting vortices in dense quark matter

    Full text link
    Quark matter at astrophysical densities may contain stable vortices due to the spontaneous breaking of hypercharge symmetry by kaon condensation. We argue that these vortices could be both charged and electrically superconducting. Current carrying loops (vortons) could be long lived and play a role in the magnetic and transport properties of this matter. We provide a scenario for vorton formation in protoneutron stars.Comment: Replaced with the published version. A typographical error in Eq. 2 is correcte

    QCD-like Theories at Finite Baryon and Isospin Density

    Get PDF
    We use 2-color QCD as a model to study the effects of simultaneous presence of chemical potentials for isospin charge, μI\mu_I, and for baryon number, μB\mu_B. We determine the phase diagrams for 2 and 4 flavor theories using the method of effective chiral Lagrangians at low densities and weak coupling perturbation theory at high densities. We determine the values of various condensates and densities as well as the spectrum of excitations as functions of μI\mu_I and μB\mu_B. A similar analysis of QCD with quarks in the adjoint representation is also presented. Our results can be of relevance for lattice simulations of these theories. We predict a phase of inhomogeneous condensation (Fulde-Ferrel-Larkin-Ovchinnikov phase) in the 2 colour 2 flavor theory, while we do not expect it the 4 flavor case or in other realizations of QCD with a positive measure.Comment: 17 pages, 14 figure

    Asymptotic deconfinement in high-density QCD

    Get PDF
    We discuss QCD with two light flavors at large baryon chemical potential mu. Color superconductivity leads to partial breaking of the color SU(3) group. We show that the infrared physics is governed by the gluodynamics of the remaining SU(2) group with an exponentially soft confinement scale Lambda_QCD' Delta*exp[-a*mu/(g*Delta)], where Delta<<mu is the superconducting gap, g is the strong coupling, and a=0.81... We estimate that at moderate baryon densities Lambda_QCD' is O(10 MeV) or smaller. The confinement radius increases exponentially with density, leading to "asymptotic deconfinement." The velocity of the SU(2) gluons is small due to the large dielectric constant of the medium.Comment: 4 pages; restructured, published versio

    Linear Confinement and AdS/QCD

    Full text link
    In a theory with linear confinement, such as QCD, the masses squared m^2 of mesons with high spin S or high radial excitation number n are expected, from semiclassical arguments, to grow linearly with S and n. We show that this behavior can be reproduced within a putative 5-dimensional theory holographically dual to QCD (AdS/QCD). With the assumption that such a dual theory exists and describes highly excited mesons as well, we show that asymptotically linear m^2 spectrum translates into a strong constraint on the INFRARED behavior of that theory. In the simplest model which obeys such a constraint we find m^2 ~ (n+S).Comment: 14 pages, 1 figur

    The algebraic and Hamiltonian structure of the dispersionless Benney and Toda hierarchies

    Get PDF
    The algebraic and Hamiltonian structures of the multicomponent dispersionless Benney and Toda hierarchies are studied. This is achieved by using a modified set of variables for which there is a symmetry between the basic fields. This symmetry enables formulae normally given implicitly in terms of residues, such as conserved charges and fluxes, to be calculated explicitly. As a corollary of these results the equivalence of the Benney and Toda hierarchies is established. It is further shown that such quantities may be expressed in terms of generalized hypergeometric functions, the simplest example involving Legendre polynomials. These results are then extended to systems derived from a rational Lax function and a logarithmic function. Various reductions are also studied.Comment: 29 pages, LaTe

    Combined electrical transport and capacitance spectroscopy of a MoS2LiNbO3{\mathrm{MoS_2-LiNbO_3}} field effect transistor

    Get PDF
    We have measured both the current-voltage (ISDI_\mathrm{SD}-VGSV_\mathrm{GS}) and capacitance-voltage (CC-VGSV_\mathrm{GS}) characteristics of a MoS2LiNbO3\mathrm{MoS_2-LiNbO_3} field effect transistor. From the measured capacitance we calculate the electron surface density and show that its gate voltage dependence follows the theoretical prediction resulting from the two-dimensional free electron model. This model allows us to fit the measured ISDI_\mathrm{SD}-VGSV_\mathrm{GS} characteristics over the \emph{entire range} of VGSV_\mathrm{GS}. Combining this experimental result with the measured current-voltage characteristics, we determine the field effect mobility as a function of gate voltage. We show that for our device this improved combined approach yields significantly smaller values (more than a factor of 4) of the electron mobility than the conventional analysis of the current-voltage characteristics only.Comment: to appear in Applied Physics Letter

    QCD and the eta prime Mass: Instantons or Confinement?

    Full text link
    We argue that lattice calculations of the η\eta' mass in QCD with Nc=2N_c=2 colors performed at non-zero baryon chemical potential can be used to study the mechanism responsible for the mass of the η\eta'. QCD with two colors is an ideal laboratory because it exhibits confinement, chiral symmetry breaking and a would-be U(1)AU(1)_A Goldstone boson at all densities. Since the instanton density and the confinement scale vary with density in a very different way, instantons are clearly distinguishable from other possible mechanisms. There is an instanton prediction for the η\eta' mass at large density that can be compared to lattice results. The density dependence of the instanton contribution is a simple consequence of the integer topological charge carried by the instanton. We also argue that Nc=3N_c=3 color QCD at finite isospin density can be used in order to study the origin of OZI-violation in the scalar sector.Comment: 6 pages, 2 figure

    Lattice QCD at finite isospin density at zero and finite temperature

    Get PDF
    We simulate lattice QCD with dynamical uu and dd quarks at finite chemical potential, μI\mu_I, for the third component of isospin (I3I_3), at both zero and at finite temperature. At zero temperature there is some μI\mu_I, μc\mu_c say, above which I3I_3 and parity are spontaneously broken by a charged pion condensate. This is in qualitative agreement with the prediction of effective (chiral) Lagrangians which also predict μc=mπ\mu_c=m_\pi. This transition appears to be second order, with scaling properties consistent with the mean-field predictions of such effective Lagrangian models. We have also studied the restoration of I3I_3 symmetry at high temperature for μI>μc\mu_I > \mu_c. For μI\mu_I sufficiently large, this finite temperature phase transition appears to be first order. As μI\mu_I is decreased it becomes second order connecting continuously with the zero temperature transition.Comment: 23 pages, Revtex, 9 figures. Major revision of sections 3 and 4 to include new analyses of critical scaling which we now find to be in the universality class of mean-field theor
    corecore