38,173 research outputs found
Triaxial nuclear models and the outer crust of nonaccreting cold neutron stars
The properties and composition of the outer crust of nonaccreting cold
neutron stars are studied by applying the model of Baym, Pethick, and
Sutherland (BPS) and taking into account for the first time triaxial
deformations of nuclei. Two theoretical nuclear models, Hartree-Fock plus
pairing in the BCS approximation (HF-BCS) with Skyrme SLy6 parametrization and
Hartree-Fock-Bogolyubov (HFB) with Gogny D1S force, are used to calculate the
nuclear masses. The two theoretical calculations are compared concerning their
neutron drip line, binding energies, magic neutron numbers, and the sequence of
nuclei in the outer crust of nonaccreting cold neutron stars, with special
emphasis on the effect of triaxial deformations. The BPS model is extended by
the higher-order corrections for the atomic binding, screening, exchange and
zero-point energies. The influence of the higher-order corrections on the
sequence of the outer crust is investigated.Comment: 7 page
Nuclear Ground-State Masses and Deformations
We tabulate the atomic mass excesses and nuclear ground-state deformations of
8979 nuclei ranging from O to . The calculations are based on the
finite-range droplet macroscopic model and the folded-Yukawa single-particle
microscopic model. Relative to our 1981 mass table the current results are
obtained with an improved macroscopic model, an improved pairing model with a
new form for the effective-interaction pairing gap, and minimization of the
ground-state energy with respect to additional shape degrees of freedom. The
values of only 9 constants are determined directly from a least-squares
adjustment to the ground-state masses of 1654 nuclei ranging from O to
106 and to 28 fission-barrier heights. The error of the mass model is
0.669~MeV for the entire region of nuclei considered, but is only 0.448~MeV for
the region above .Comment: 50 pages plus 20 PostScript figures and 160-page table obtainable by
anonymous ftp from t2.lanl.gov in directory masses, LA-UR-93-308
Surface tension in a compressible liquid-drop model: Effects on nuclear density and neutron skin thickness
We examine whether or not the surface tension acts to increase the nucleon
density in the nuclear interior within a compressible liquid-drop model. We
find that it depends on the density dependence of the surface tension, which
may in turn be deduced from the neutron skin thickness of stable nuclei.Comment: 4 pages, 1 figure, to be published in Physical Review
Some interactions among driver, vehicle, and roadway variables in normal driving
Effects of road and vehicle conditions, visual warning signs, direction of turns, night time, and skill on automobile driver performance are studied in several experiments. Considered criteria are variability in speed and acceleration
Phonon driven spin distribution due to the spin-Seebeck effect
Here we report on measurements of the spin-Seebeck effect of GaMnAs over an
extended temperature range alongside the thermal conductivity, specific heat,
magnetization, and thermoelectric power. The amplitude of the spin-Seebeck
effect in GaMnAs scales with the thermal conductivity of the GaAs substrate and
the phonon-drag contribution to the thermoelectric power of the GaMnAs,
demonstrating that phonons drive the spin redistribution. A phenomenological
model involving phonon-magnon drag explains the spatial and temperature
dependence of the measured spin distribution.Comment: 12 pages, 3 figure
- …
