1,266 research outputs found

    Influence of thoracic epidural analgesia on cardiovascular autonomic control after thoracic surgery

    Get PDF
    Background. Thoracic epidural analgesia (TEA) is effective in alleviating pain after major thoracoabdominal surgery and may also reduce postoperative mortality and morbidity. This study investigated cardiovascular autonomic control in patients undergoing elective thoracic surgery and its modulation by continuous TEA. Methods. Thirty‐eight patients were randomly assigned to receive patient‐controlled analgesia (PCA group) or thoracic epidural analgesia (TEA group) with doses of bupivacaine (0.25% during operation, 0.125% after operation) and fentanyl (2 µgml-1). Heart rate variability (HRV), baroreflex function and pressure response to nitroglycerine and phenylephrine were assessed before operation, 4 h after the end of surgery (POD 0) and on the first and second postoperative days (POD1 and POD2). Results. Early after surgery, all HRV variables and baroreflex sensitivities were markedly decreased in both groups. In the TEA group, total HRV and its high‐frequency components (HF) increased towards preoperative values at POD1 and POD2, whereas the ratio of low to high frequencies (LF/HF) was significantly reduced (mean (sd), -44 (15)% at POD 0, -38 (17)% at POD1, -37 (18%) at POD2) and associated with blunting of the postoperative increase in heart rate and blood pressure. In the PCA group, the ratio of LF/HF remained unchanged and the decrements in HRV variables persisted until POD2. In the two groups, baroreflex sensitivities and pressure responses recovered preoperative values at POD2. Conclusions. In contrast with PCA management, TEA using low concentrations of bupivacaine and fentanyl blunted cardiac sympathetic neural drive, resulting in vagal predominance, while HRV variables were better restored after surgery. Br J Anaesth 2003; 91: 525-3

    Perioperative mortality and major cardio-pulmonary complications after lung surgery for non-small cell carcinoma

    Get PDF
    Objectives: A database of patients operated of lung cancer was analyzed to evaluate the predictive risk factors of operative deaths and life-threatening cardiopulmonary complications. Methods: From 1990 to 1997, data were collected concerning 634 consecutive patients undergoing lung resection for non-small cell carcinoma in an academic medical centre and a regional hospital. Operations were managed by a team of experienced surgeons, anaesthesiologists and chest physicians. Operative mortality was defined as death within 30 days of operation and/or intra-hospital death. Respiratory failure, myocardial infarct, heart failure, pulmonary embolism and stroke were considered as major non-fatal complications. Preoperative risk factors, extent of surgery, pTNM staging, perioperative mortality and major cardiopulmonary complications were recorded and evaluated using chi-square statistics and multivariate logistic regression. Results: Complete data were obtained in 621 cases. The overall operative mortality was 3.2% (n=19). Cardiovascular complications (n=10), haemorrhage (n=4) and sepsis or acute lung injury (n=5) were incriminated as the main causative factors. In addition, there were 13 life-threatening complications (2.1%) consisting in strokes (n=4), myocardial infarcts (n=5), pulmonary embolisms (n=1), acute lung injury (n=1) and respiratory failure (n=2). Four independent predictors of operative death were identified: pneumonectomy, evidence of coronary artery disease (CAD), ASA class 3 or 4 and period 1990-93. In addition, the risk of major complications was increased in hypertensive patients and in those belonging to ASA class 3 or 4. A trend towards improved outcome was observed during the second period, from 1994 to 97. Conclusion: Our data demonstrate that perioperative mortality is mainly dependent on the extent of surgery, the presence of CAD and provision of adequate medical and nursing care. Preoperative testing and interventions to reduce the cardiovascular risk factors may help to further improve perioperative outcom

    Structural, elastic and thermal properties of cementite (Fe3_3C) calculated using Modified Embedded Atom Method

    Full text link
    Structural, elastic and thermal properties of cementite (Fe3_3C) were studied using a Modified Embedded Atom Method (MEAM) potential for iron-carbon (Fe-C) alloys. Previously developed Fe and C single element potentials were used to develop an Fe-C alloy MEAM potential, using a statistically-based optimization scheme to reproduce structural and elastic properties of cementite, the interstitial energies of C in bcc Fe as well as heat of formation of Fe-C alloys in L12_{12} and B1_1 structures. The stability of cementite was investigated by molecular dynamics simulations at high temperatures. The nine single crystal elastic constants for cementite were obtained by computing total energies for strained cells. Polycrystalline elastic moduli for cementite were calculated from the single crystal elastic constants of cementite. The formation energies of (001), (010), and (100) surfaces of cementite were also calculated. The melting temperature and the variation of specific heat and volume with respect to temperature were investigated by performing a two-phase (solid/liquid) molecular dynamics simulation of cementite. The predictions of the potential are in good agreement with first-principles calculations and experiments.Comment: 12 pages, 9 figure

    Quantifying the Energetics and Length Scales of Carbon Segregation to Fe Symmetric Tilt Grain Boundaries Using Atomistic Simulations

    Full text link
    Segregation of impurities to grain boundaries plays an important role in both the stability and macroscopic behavior of polycrystalline materials. The research objective in this work is to better characterize the energetics and length scales involved with the process of solute and impurity segregation to grain boundaries. Molecular dynamics simulations are used to calculate the segregation energies for carbon within multiple grain boundary sites over a database of 125 symmetric tilt grain boundaries in Fe. The simulation results show that the majority of atomic sites near the grain boundary have segregation energies lower than in the bulk. Moreover, depending on the boundary, the segregation energies approach the bulk value approximately 5-12 \AA\ away from the center of the grain boundary, providing an energetic length scale for carbon segregation. A subsequent data reduction and statistical representation of this dataset provides critical information such as about the mean segregation energy and the associated energy distributions for carbon atoms as a function of distance from the grain boundary, which quantitatively informs higher scale models with energetics and length scales necessary for capturing the segregation behavior of impurities in Fe. The significance of this research is the development of a methodology capable of ascertaining segregation energies over a wide range of grain boundary character (typical of that observed in polycrystalline materials), which herein has been applied to carbon segregation in a specific class of grain boundaries in iron

    Inhibition of death receptor signals by cellular FLIP.

    Get PDF
    The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis. However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals, indicating that inhibitors of the apoptosis-signalling pathway must exist. Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues. The short form, FLIPs, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis, whereas the long form, FLIP(L), contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue. FLIPs and FLIP(L) interact with the adaptor protein FADD and the protease FLICE, and potently inhibit apoptosis induced by all known human death receptors. FLIP(L) is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis. High levels of FLIP(L) protein are also detectable in melanoma cell lines and malignant melanoma tumours. Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis

    Superadiabatic dynamical density functional theory for colloidal suspensions under homogeneous steady-shear

    Full text link
    The superadiabatic dynamical density functional theory (superadiabatic-DDFT) is a promising new method for the study of colloidal systems out-of-equilibrium. Within this approach the viscous forces arising from interparticle interactions are accounted for in a natural way by treating explicitly the dynamics of the two-body correlations. For bulk systems subject to spatially homogeneous shear we use the superadiabatic-DDFT framework to calculate the steady-state pair distribution function and the corresponding viscosity for low values of the shear-rate. We then consider a variant of the central approximation underlying this superadiabatic theory and obtain an inhomogeneous generalization of a rheological bulk theory due to Russel and Gast. This paper thus establishes for the first time a connection between DDFT approaches, formulated to treat inhomogeneous systems, and existing work addressing nonequilibrium microstructure and rheology in bulk colloidal suspensions

    Identification of a new murine tumor necrosis factor receptor locus that contains two novel murine receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Get PDF
    Tumor necrosis factor (TNF) ligand and receptor superfamily members play critical roles in diverse developmental and pathological settings. In search for novel TNF superfamily members, we identified a murine chromosomal locus that contains three new TNF receptor-related genes. Sequence alignments suggest that the ligand binding regions of these murine TNF receptor homologues, mTNFRH1, -2 and -3, are most homologous to those of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. By using a number of in vitro ligand-receptor binding assays, we demonstrate that mTNFRH1 and -2, but not mTNFRH3, bind murine TRAIL, suggesting that they are indeed TRAIL receptors. This notion is further supported by our demonstration that both mTNFRH1:Fc and mTNFRH2:Fc fusion proteins inhibited mTRAIL-induced apoptosis of Jurkat cells. Unlike the only other known murine TRAIL receptor mTRAILR2, however, neither mTNFRH2 nor mTNFRH3 has a cytoplasmic region containing the well characterized death domain motif. Coupled with our observation that overexpression of mTNFRH1 and -2 in 293T cells neither induces apoptosis nor triggers NFkappaB activation, we propose that the mTnfrh1 and mTnfrh2 genes encode the first described murine decoy receptors for TRAIL, and we renamed them mDcTrailr1 and -r2, respectively. Interestingly, the overall sequence structures of mDcTRAILR1 and -R2 are quite distinct from those of the known human decoy TRAIL receptors, suggesting that the presence of TRAIL decoy receptors represents a more recent evolutionary event
    corecore