8,932 research outputs found
Spatial clustering of mental disorders and associated characteristics of the neighbourhood context in Malmö, Sweden, in 2001
Study objective: Previous research provides preliminary evidence of spatial variations of mental disorders and associations between neighbourhood social context and mental health. This study expands past literature by (1) using spatial techniques, rather than multilevel models, to compare the spatial distributions of two groups of mental disorders (that is, disorders due to psychoactive substance use, and neurotic, stress related, and somatoform disorders); and (2) investigating the independent impact of contextual deprivation and neighbourhood social disorganisation on mental health, while assessing both the magnitude and the spatial scale of these effects.
Design: Using different spatial techniques, the study investigated mental disorders due to psychoactive substance use, and neurotic disorders.
Participants: All 89 285 persons aged 40–69 years residing in Malmö, Sweden, in 2001, geolocated to their place of residence.
Main results: The spatial scan statistic identified a large cluster of increased prevalence in a similar location for the two mental disorders in the northern part of Malmö. However, hierarchical geostatistical models showed that the two groups of disorders exhibited a different spatial distribution, in terms of both magnitude and spatial scale. Mental disorders due to substance consumption showed larger neighbourhood variations, and varied in space on a larger scale, than neurotic disorders. After adjustment for individual factors, the risk of substance related disorders increased with neighbourhood deprivation and neighbourhood social disorganisation. The risk of neurotic disorders only increased with contextual deprivation. Measuring contextual factors across continuous space, it was found that these associations operated on a local scale.
Conclusions: Taking space into account in the analyses permitted deeper insight into the contextual determinants of mental disorders
Higgs ultraviolet softening
We analyze the leading effective operators which induce a quartic momentum
dependence in the Higgs propagator, for a linear and for a non-linear
realization of electroweak symmetry breaking. Their specific study is relevant
for the understanding of the ultraviolet sensitivity to new physics. Two
methods of analysis are applied, trading the Lagrangian coupling by: i) a
"ghost" scalar, after the Lee-Wick procedure; ii) other effective operators via
the equations of motion. The two paths are shown to lead to the same effective
Lagrangian at first order in the operator coefficients. It follows a
modification of the Higgs potential and of the fermionic couplings in the
linear realization, while in the non-linear one anomalous quartic gauge
couplings, Higgs-gauge couplings and gauge-fermion interactions are induced in
addition. Finally, all LHC Higgs and other data presently available are used to
constrain the operator coefficients; the future impact of data via off-shell Higgs exchange and of vector boson fusion data is
considered as well. For completeness, a summary of pure-gauge and gauge-Higgs
signals exclusive to non-linear dynamics at leading-order is included.Comment: 31 pages, 3 figures, 7 table
Disentangling a dynamical Higgs
The pattern of deviations from Standard Model predictions and couplings is
different for theories of new physics based on a non-linear realization of the
gauge symmetry breaking and those assuming a linear
realization. We clarify this issue in a model-independent way via its effective
Lagrangian formulation in the presence of a light Higgs particle, up to first
order in the expansions: dimension-six operators for the linear expansion and
four derivatives for the non-linear one. Complete sets of pure gauge and
gauge-Higgs operators are considered, implementing the renormalization
procedure and deriving the Feynman rules for the non-linear expansion. We
establish the theoretical relation and the differences in physics impact
between the two expansions. Promising discriminating signals include the
decorrelation in the non-linear case of signals correlated in the linear one:
some pure gauge versus gauge-Higgs couplings and also between couplings with
the same number of Higgs legs. Furthermore, anomalous signals expected at first
order in the non-linear realization may appear only at higher orders of the
linear one, and vice versa. We analyze in detail the impact of both type of
discriminating signals on LHC physics.Comment: Version published in JHE
Self-pulsing effect in chaotic scattering
We study the quantum and classical scattering of Hamiltonian systems whose
chaotic saddle is described by binary or ternary horseshoes. We are interested
in parameters of the system for which a stable island, associated with the
inner fundamental periodic orbit of the system exists and is large, but chaos
around this island is well developed. In this situation, in classical systems,
decay from the interaction region is algebraic, while in quantum systems it is
exponential due to tunneling. In both cases, the most surprising effect is a
periodic response to an incoming wave packet. The period of this self-pulsing
effect or scattering echoes coincides with the mean period, by which the
scattering trajectories rotate around the stable orbit. This period of rotation
is directly related to the development stage of the underlying horseshoe.
Therefore the predicted echoes will provide experimental access to topological
information. We numerically test these results in kicked one dimensional models
and in open billiards.Comment: Submitted to New Journal of Physics. Two movies (not included) and
full-resolution figures are available at http://www.cicc.unam.mx/~mejia
Interfacial charge transfer in nanoscale polymer transistors
Interfacial charge transfer plays an essential role in establishing the
relative alignment of the metal Fermi level and the energy bands of organic
semiconductors. While the details remain elusive in many systems, this charge
transfer has been inferred in a number of photoemission experiments. We present
electronic transport measurements in very short channel ( nm)
transistors made from poly(3-hexylthiophene) (P3HT). As channel length is
reduced, the evolution of the contact resistance and the zero-gate-voltage
conductance are consistent with such charge transfer. Short channel conduction
in devices with Pt contacts is greatly enhanced compared to analogous devices
with Au contacts, consistent with charge transfer expectations. Alternating
current scanning tunneling microscopy (ACSTM) provides further evidence that
holes are transferred from Pt into P3HT, while much less charge transfer takes
place at the Au/P3HT interface.Comment: 19 preprint pages, 6 figure
Towards Minimal S4 Lepton Flavor Model
We study lepton flavor models with the flavor symmetry. We construct
simple models with smaller numbers of flavon fields and free parameters, such
that we have predictions among lepton masses and mixing angles. The model with
a triplet flavon is not realistic, but we can construct realistic models
with two triplet flavons, or one triplet and one doublet flavons.Comment: 18 pages, 4 figures, references are adde
Search for CP Violation in the decays D+ -> K_S pi+ and D+ -> K_S K+
A high statistics sample of photo-produced charm from the FOCUS(E831)
experiment at Fermilab has been used to search for direct CP violation in the
decays D+->K_S pi+ and D+ -> K_S K+. We have measured the following asymmetry
parameters relative to D+->K-pi+pi+: A_CP(K_S pi+) = (-1.6 +/- 1.5 +/- 0.9)%,
A_CP(K_S K+) = (+6.9 +/- 6.0 +/- 1.5)% and A_CP(K_S K+) = (+7.1 +/- 6.1 +/-
1.2)% relative to D+->K_S pi+. The first errors quoted are statistical and the
second are systematic. We also measure the relative branching ratios:
\Gamma(D+->\bar{K0}pi+)/\Gamma(D+->K-pi+pi+) = (30.60 +/- 0.46 +/- 0.32)%,
\Gamma(D+->\bar{K0}K+)/\Gamma(D+->K-pi+pi+) = (6.04 +/- 0.35 +/- 0.30)% and
\Gamma(D+->\bar{K0}K+)/\Gamma(D+->\bar{K0}pi+) = (19.96 +/- 1.19 +/- 0.96)%.Comment: 4 pages, 3 figure
A Measurement of the Ds+ Lifetime
A high statistics measurement of the Ds+ lifetime from the Fermilab
fixed-target FOCUS photoproduction experiment is presented. We describe the
analysis of the two decay modes, Ds+ -> phi(1020)pi+ and Ds+ ->
\bar{K}*(892)0K+, used for the measurement. The measured lifetime is 507.4 +/-
5.5 (stat.) +/- 5.1 (syst.) fs using 8961 +/- 105 Ds+ -> phi(1020)pi+ and 4680
+/- 90 Ds+ -> \bar{K}*(892)0K+ decays. This is a significant improvement over
the present world average.Comment: 5 pages, 3 figures, 2 tables, submitted to PR
New FOCUS results on charm mixing and CP violation
We present a summary of recent results on CP violation and mixing in the
charm quark sector based on a high statistics sample collected by
photoproduction experiment FOCUS (E831 at Fermilab). We have measured the
difference in lifetimes for the decays: and . This translates into a measurement of the mixing parameter in
the \d0d0 system, under the assumptions that is an equal mixture of
CP odd and CP even eigenstates, and CP violation is negligible in the neutral
charm meson system. We verified the latter assumption by searching for a CP
violating asymmetry in the Cabibbo suppressed decay modes , and . We show preliminary
results on a measurement of the branching ratio .Comment: 9 pages, 6 figures, requires espcrc2.sty. Presented by S.Bianco at
CPConf2000, September 2000, Ferrara (Italy). In this revision, fixed several
stylistic flaws, add two significant references, fixed a typo in Tab.
A See-Saw model for fermion masses and mixings
We present a supersymmetric see-saw model giving rise to the most
general neutrino mass matrix compatible with Tri-Bimaximal mixing. We adopt the
flavour symmetry, broken by suitable vacuum expectation values
of a small number of flavon fields. We show that the vacuum alignment is a
natural solution of the most general superpotential allowed by the flavour
symmetry, without introducing any soft breaking terms. In the charged lepton
sector, mass hierarchies are controlled by the spontaneous breaking of the
flavour symmetry caused by the vevs of one doublet and one triplet flavon
fields instead of using the Froggatt-Nielsen U(1) mechanism. The next to
leading order corrections to both charged lepton mass matrix and flavon vevs
generate corrections to the mixing angles as large as .
Applied to the quark sector, the symmetry group can give a
leading order proportional to the identity as well as a matrix with
coefficients in the Cabibbo submatrix. Higher order
corrections produce non vanishing entries in the other entries which
are generically of .Comment: 30 pages, 3 figures, minor changes to match the published versio
- …
