106 research outputs found
Processor Enhancements for Media Streaming Applications
The development of more processing demanding applications on the Internet (video broadcasting) on one hand and the popularity of recent devices at the user level (digital cameras, wireless videophones, ...) on the other hand introduce challenges at several levels. Today, such devices present processing capabilities and bandwidth settings that are inefficient to manage scalable QoS requirements in a typical media delivery framework. In this paper, we present an impact study of such a scalable data representation optimized for QoS (Matching Pursuit 3D algorithms) on processor architectures to achieve the best performance and power efficiency. A review of state of the art techniques for processor architecture enhancement let us expect promising opportunities from the latest developments in the reconfigurable computing research field. We present here the first design steps of an efficient reconfigurable coprocessor especially designed to cope with future video delivery and multimedia processing requirements. Architecture perspectives are proposed with respect to low development cost constraints, backward compatibilty and easy coprocessor usage using an original strategy based on a hardware/software codesign methodolog
Amplitude Modulation and Relaxation-Oscillation of Counterpropagating Rolls within a Broken-Symmetry Laser-Induced Electroconvection Strip
We report a liquid-crystal pattern-formation experiment in which we break the
lateral (translational) symmetry of a nematic medium with a laser-induced
thermal gradient. The work is motivated by an improved measurement (reported
here) of the temperature dependence of the electroconvection threshold voltage
in planar-nematic 4-methoxybenzylidene-4-butylaniline (MBBA). In contrast with
other broken-symmetry-pattern studies that report a uniform drift, we observe a
strip of counterpropagating rolls that collide at a sink point, and a strong
temporally periodic amplitude modulation within a width of 3-4 rolls about the
sink point. The time dependence of the amplitude at a fixed position is
periodic but displays a nonsinusoidal relaxation-oscillation profile. After
reporting experimental results based on spacetime contours and wavenumber
profiles, along with a measurement of the change in the drift frequency with
applied voltage at a fixed control parameter, we propose some potential
guidelines for a theoretical model based on saddle-point solutions for
Eckhaus-unstable states and coupled complex Ginzburg-Landau equations.
Published in PRE 73, 036317 (2006).Comment: Published in Physical Review E in March 200
A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin.
Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of a CAG repeat encoding a polyglutamine tract in the huntingtin (Htt) protein. The mutation leads to neuronal death through mechanisms which are still unknown. One hypothesis is that mitochondrial defects may play a key role. In support of this, the activity of mitochondrial complex II (C-II) is preferentially reduced in the striatum of HD patients. Here, we studied C-II expression in different genetic models of HD expressing N-terminal fragments of mutant Htt (mHtt). Western blot analysis showed that the expression of the 30 kDa Iron-Sulfur (Ip) subunit of C-II was significantly reduced in the striatum of the R6/1 transgenic mice, while the levels of the FAD containing catalytic 70 kDa subunit (Fp) were not significantly changed. Blue native gel analysis showed that the assembly of C-II in mitochondria was altered early in N171-82Q transgenic mice. Early loco-regional reduction in C-II activity and Ip protein expression was also demonstrated in a rat model of HD using intrastriatal injection of lentiviral vectors encoding mHtt. Infection of the rat striatum with a lentiviral vector coding the C-II Ip or Fp subunits induced a significant overexpression of these proteins that led to significant neuroprotection of striatal neurons against mHtt neurotoxicity. These results obtained in vivo support the hypothesis that structural and functional alterations of C-II induced by mHtt may play a critical role in the degeneration of striatal neurons in HD and that mitochondrial-targeted therapies may be useful in its treatment
Algorithm-architecture matching metrics
The high level synthesis question is too wide to be optimaly addressed by a single and general CAD tool. So, interactive transfers
of information are required between the tool and the designer, in order to make tractable the optimization of the synthesis task
in a reasonnable time . This paper introduces an appoach which aims to provide the designer with information to quantify the
hardware complexity in order to guide him in during his transformation choices . The method is based on probabilities, focuse the
whole set of ressources and takes into account the real dependencies between operations . The method is characterized by a high
level of abstraction. It firstly enables to combine the estimation with the most powerful algorithmic-transformations and secondly
to be easily independent from the architectural model .Le champ d'action de la synthèse d'architecture s'avère trop vaste pour qu'un outil puisse offrir une solution optimale quelque soit l'algorithme cible. C'est pourquoi l'étude préalable de l'algorithme spécifié apparaît comme incontournable. Nous présentons ici, une nouvelle approche d'estimation dynamique des ressources, appliquée aux architectures pipelines sous contrainte de Latence. Nous employons une méthode probabiliste prenant en compte réellement les contraintes entre opérations, dans le but de guider le choix des transformations et des algorithmes impliqués dans la spécification. Les propriétés analysées sont la concurrence dans le temps des opérateurs, bus, registres et interconnexions et les statistiques de liens entre opérateurs. Des métriques sont également proposées pour l'interprétation des courbes d'estimation obtenues
Formalized methodology for data reuse: exploration for low-power hierarchical memory mappings
K-edge x-ray dichroism investigation of Fe1-xCoxSi : experimental evidence for spin polarization crossover
Both Fe and Co K-edge x-ray magnetic circular dichroism (XMCD) have been employed as element-specific probes of the magnetic moments in the composition series of the disordered ferromagnet Fe1-xCoxSi (for x = 0.2, 0.3, 0.4, 0.5). A definitive single peaked XMCD profile occurs for all compositions at both Fe and Co K-edges. The Fe 4p orbital moment, deduced from the integral of the XMCD signal, has a steep dependence on x at low doping levels and evolves to a different (weaker ) dependence at x ≥ 0.3, similar to the behavior of the magnetization in the Co composition range studied here. It is systematically higher, by at least a factor of two, than the corresponding Co orbital moment for most of the composition series. Fine structure beyond the K-edge absorption (limited range EXAFS) suggests that the local order (atomic environment) is very similar across the series, from the perspective of both the Fe and Co absorbing atom. The variation in the XMCD integral across the Co composition range has two regimes, that which occurs below x=0.3 and then evolves to different behavior at higher doping levels. This is more conspicuously present in the Fe contribution. This is rationalized as the evolution from a half-metallic ferromagnet at low Co doping to that of a strong ferromagnet at x > 0.3 and as such, spin polarization crossover occurs. The Fermi level is tuned from the majority spin band for x < 0.3 where a strongly polarized majority spin electron gas prevails, to a regime where minority spin carriers dominate at higher doping. The evolution of the Fe-derived spin polarized (3d) bands, indirectly probed here via the 4p states, is the primary determinant of the doping dependence of the magnetism in this alloy series.NRF and URC-UJ.http://www.elsevier.com/locate/jmmmhb201
Wigner-Mott insulator-to-insulator transition at pressure in charge-ordered Fe2OBO3
International audienc
Proton Magnetic Resonance Spectroscopy Reveals Neuroprotection by Oral Minocycline in a Nonhuman Primate Model of Accelerated NeuroAIDS
Background: Despite the advent of highly active anti-retroviral therapy (HAART), HIV-associated neurocognitive disorders continue to be a significant problem. In efforts to understand and alleviate neurocognitive deficits associated with HIV, we used an accelerated simian immunodeficiency virus (SIV) macaque model of NeuroAIDS to test whether minocycline is neuroprotective against lentiviral-induced neuronal injury. Methodology/Principal Findings: Eleven rhesus macaques were infected with SIV, depleted of CD8+ lymphocytes, and studied until eight weeks post inoculation (wpi). Seven animals received daily minocycline orally beginning at 4 wpi. Neuronal integrity was monitored in vivo by proton magnetic resonance spectroscopy and post-mortem by immunohistochemistry for synaptophysin (SYN), microtubule-associated protein 2 (MAP2), and neuronal counts. Astrogliosis and microglial activation were quantified by measuring glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (IBA-1), respectively. SIV infection followed by CD8+ cell depletion induced a progressive decline in neuronal integrity evidenced by declining N-acetylaspartate/creatine (NAA/Cr), which was arrested with minocycline treatment. The recovery of this ratio was due to increases in NAA, indicating neuronal recovery, and decreases in Cr, likely reflecting downregulation of glial cell activation. SYN, MAP2, and neuronal counts were found to be higher in minocycline-treated animals compared to untreated animals while GFAP and IBA-1 expression were decreased compared to controls. CSF and plasma viral loads were lower in MN-treated animals. Conclusions/Significance: In conclusion, oral minocycline alleviates neuronal damage induced by the AIDS virus
- …
