21,225 research outputs found
Dual pairing of symmetry groups and dynamical groups in physics
This article reviews many manifestations and applications of dual
representations of pairs of groups, primarily in atomic and nuclear physics.
Examples are given to show how such paired representations are powerful aids in
understanding the dynamics associated with shell-model coupling schemes and in
identifying the physical situations for which a given scheme is most
appropriate. In particular, they suggest model Hamiltonians that are diagonal
in the various coupling schemes. The dual pairing of group representations has
been applied profitably in mathematics to the study of invariant theory. We
show that parallel applications to the theory of symmetry and dynamical groups
in physics are equally valuable. In particular, the pairing of the
representations of a discrete group with those of a continuous Lie group or
those of a compact Lie with those of a non-compact Lie group makes it possible
to infer many properties of difficult groups from those of simpler groups. This
review starts with the representations of the symmetric and unitary groups,
which are used extensively in the many-particle quantum mechanics of bosonic
and fermionic systems. It gives a summary of the many solutions and
computational techniques for solving problems that arise in applications of
symmetry methods in physics and which result from the famous Schur-Weyl duality
theorem for the pairing of these representations. It continues to examine many
chains of symmetry groups and dual chains of dynamical groups associated with
the several coupling schemes in atomic and nuclear shell models and the
valuable insights and applications that result from this examination.Comment: 51 pages, 5 figures and 5 table
Magnetism in meteorites
An overview is presented of magnetism in meteorites. A glossary of magnetism terminology followed by discussion of the various techniques used for magnetism studies in meteorites are included. The generalized results from use of these techniques by workers in the field are described. A brief critical analysis is offered
Control of macrophytes by grass carp (ctenopharyngodon idella) in a Waikato drain, New Zealand
Hornwort (Ceratophyllum demersum L.) and other aquatic macrophytes have historically been mechanically removed from the Rangiriri drain and Churchill East drain to maintain drain efficiency. As an alternative control method for the high plant biomass that accumulates at the end of summer, the effect of stocking diploid grass carp (Ctenopharyngodon idella L.) on the aquatic vegetation was evaluated in these Waikato drainage systems. At the start of the trial, both drains had a low diversity of aquatic macrophytes, and of the nine species (including the emergents), seven were exotic. Two months after grass carp were released to Churchill East drain (the treated drain) the four submerged and floating macrophyte species became scarce in the main drain. Over the same period, these species increased in biomass in Rangiriri drain (the untreated drain), where hornwort became dense and surface-reaching and remained so for the duration of the trial. However, grass carp did not control submerged vegetation in smaller side drains or the shallow, upper parts of the main drain, or the marginal sprawling species and emergent species. The cost of leasing the grass carp was similar to the cost of clearing the drains mechanically, but grass carp provided continuous weed control. However, subsequent to this trial, 62 dead grass carp were found in Churchill East drain in February 2001, and weed cover subsequently increased. This illustrates that grass carp management in New Zealand agricultural drains can be problematic due to periodic fish kills
Vector coherent state representations, induced representations, and geometric quantization: II. Vector coherent state representations
It is shown here and in the preceeding paper (quant-ph/0201129) that vector
coherent state theory, the theory of induced representations, and geometric
quantization provide alternative but equivalent quantizations of an algebraic
model. The relationships are useful because some constructions are simpler and
more natural from one perspective than another. More importantly, each approach
suggests ways of generalizing its counterparts. In this paper, we focus on the
construction of quantum models for algebraic systems with intrinsic degrees of
freedom. Semi-classical partial quantizations, for which only the intrinsic
degrees of freedom are quantized, arise naturally out of this construction. The
quantization of the SU(3) and rigid rotor models are considered as examples.Comment: 31 pages, part 2 of two papers, published versio
The effect of total knee arthroplasty on joint movement during functional activities and joint range of motion with particular regard to higher flexion users
Study aimed to evaluate active and functional knee excursion of patients before and after total knee arthroplasty (TKA) and to determine whether TKA restores quality of life related to functional activities of daily living. Found that although TKA offers excellent pain relief and contributes to the overall well-being of the patient, these results suggest that it also leads to a reduced range of active and functional motion in the majority of patients. This is associated with a lower-than-normal physical quality of life. The design of implants and rehabilitation programmes should be reconsidered so that better range of motion and quality of life can be achieved for patients
Thermomagnetic analysis of meteorites, 2: C2 chondrites
Samples of all eighteen of the known C2 chondrites were analyzed thermomagnetically. For eleven of these, initial Fe3O4 content is low(generally 1%) and the J sub s-T curves are irreversible. The heating curves show variable and erratic behavior, whereas the cooling curves appear to be that of Fe3O4. The saturation moment after cooling is greater (up to 10 times larger) than it is initially. This behavior is interpreted to be the result of the production of magnetite from a thermally unstable phase--apparently FeS. Four of the remaining 7 C2 chondrites contain Fe3O4 as the only significant magnetic phase: initial magnetite contents range from 4 to 13 percent. The remaining three C2 chondrites contain iron or nickel-iron in addition to Fe3O4. These seven C2 chondrites show little evidence of the breakdown of a thermally unstable phase
USSR Space Life Sciences Digest, issue 6
This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine
- …
