1,520 research outputs found
Quantum spin systems at positive temperature
We develop a novel approach to phase transitions in quantum spin models based
on a relation to their classical counterparts. Explicitly, we show that
whenever chessboard estimates can be used to prove a phase transition in the
classical model, the corresponding quantum model will have a similar phase
transition, provided the inverse temperature and the magnitude of the
quantum spins \CalS satisfy \beta\ll\sqrt\CalS. From the quantum system we
require that it is reflection positive and that it has a meaningful classical
limit; the core technical estimate may be described as an extension of the
Berezin-Lieb inequalities down to the level of matrix elements. The general
theory is applied to prove phase transitions in various quantum spin systems
with \CalS\gg1. The most notable examples are the quantum orbital-compass
model on and the quantum 120-degree model on which are shown to
exhibit symmetry breaking at low-temperatures despite the infinite degeneracy
of their (classical) ground state.Comment: 47 pages, version to appear in CMP (style files included
Penrose Limits and Non-local theories
We investigate Penrose limits of two classes of non-local theories, little
string theories and non-commutative gauge theories. Penrose limits of the
near-horizon geometry of NS5-branes help to shed some light on the high energy
spectrum of little string theories. We attempt to understand renormalization
group flow in these theories by considering Penrose limits wherein the null
geodesic also has a radial component. In particular, we demonstrate that it is
possible to construct a pp-wave spacetime which interpolates between the linear
dilaton and the AdS regions for the Type IIA NS5-brane. Similar analysis is
considered for the holographic dual geometry to non-commutative field theories.Comment: 27 pages, LaTeX; v2: added reference
Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes
A chromosphere is a universal attribute of stars of spectral type later than
~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae
binaries) show extended and highly turbulent chromospheres, which develop into
slow massive winds. The associated continuous mass loss has a significant
impact on stellar evolution, and thence on the chemical evolution of galaxies.
Yet despite the fundamental importance of those winds in astrophysics, the
question of their origin(s) remains unsolved. What sources heat a chromosphere?
What is the role of the chromosphere in the formation of stellar winds? This
chapter provides a review of the observational requirements and theoretical
approaches for modeling chromospheric heating and the acceleration of winds in
single cool, evolved stars and in eclipsing binary stars, including physical
models that have recently been proposed. It describes the successes that have
been achieved so far by invoking acoustic and MHD waves to provide a physical
description of plasma heating and wind acceleration, and discusses the
challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript;
accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake
(Berlin: Springer
Chinese Script vs Plate-Like Precipitation of Beta-Al9Fe2Si2 Phase in an Al-6.5Si-1Fe Alloy
The microstructure of a high-purity Al-6.5Si-1Fe(wt pct) alloy after solidification at various cooling rates was investigated. In most of the cases, the monoclinic
beta-Al9Fe2Si2 phase was observed as long and thin lamellae. However, at a very slow cooling rate, Febearing precipitates with Chinese script morphology appeared together with lamellae. Further analysis showed all these Chinese script precipitates correspond also to the monoclinic beta phase. This finding stresses that differentiating second phases according to their shape may be misleading
Recommended from our members
Grass burning under our feet: Indigenous enterprise development in a political economy of whiteness
In this article we discuss some of our findings from two research projects that explore opportunities for Indigenous enterprise development in remote locations in Northern and Central Australia. Based on a series of focus groups and in-depth interviews with Indigenous community leaders, Traditional Owners, government officials, Land Council officials and other stakeholders, we discuss barriers to economic development faced by Indigenous communities in remote regions. We argue that many of these barriers are the material effects of discursive practices of ‘whiteness’ in the political economy. We discuss the relationships between institutions and Indigenous communities that constitute the Indigenous political economy and argue that these relationships are informed by discursive practices of whiteness and colonial-capitalist relations of power. We conclude by discussing the implications of our findings for management learning and public policy
Expedition 361 summary
International Ocean Discovery Program Expedition 361 drilled six sites on the southeast African margin (southwest Indian Ocean) and in the Indian-Atlantic Ocean gateway, from 30 January to 31 March 2016. In total, 5175 m of core was recovered, with an average recovery of 102%, during 29.7 days of on-site operations. The sites, situated in the Mozambique Channel at locations directly influenced by discharge from the Zambezi and Limpopo River catchments, the Natal Valley, the Agulhas Plateau, and Cape Basin, were targeted to reconstruct the history of the greater Agulhas Current system over the past ~5 My. The Agulhas Current is the strongest western boundary current in the Southern Hemisphere, transporting some 70 Sv of warm, saline surface water from the tropical Indian Ocean along the East African margin to the tip of Africa. Exchanges of heat and moisture with the atmosphere influence southern African climates, including individual weather systems such as extratropical cyclone formation in the region and rainfall patterns. Recent ocean model and paleoceanographic data further point at a potential role of the Agulhas Current in controlling the strength and mode of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Pleistocene. Spillage of saline Agulhas water into the South Atlantic stimulates buoyancy anomalies that may influence basin-wide AMOC, with implications for convective activity in the North Atlantic and global climate change. The main objectives of the expedition were to establish the role of the Agulhas Current in climatic changes during the Pliocene–Pleistocene, specifically to document the dynamics of the Indian-Atlantic Ocean gateway circulation during this time, to examine the connection of the Agulhas leakage and AMOC, and to address the influence of the Agulhas Current on African terrestrial climates and coincidences with human evolution. Additionally, the expedition set out to fulfill the needs of Ancillary Project Letter number 845, consisting of high-resolution interstitial water sampling to help constrain the temperature and salinity profiles of the ocean during the Last Glacial Maximum.
The expedition made major strides toward fulfilling each of these objectives. The recovered sequences allowed generation of complete spliced stratigraphic sections that range from 0 to between ~0.13 and 7 Ma. This sediment will provide decadal- to millennial-scale climatic records that will allow answering the paleoceanographic and paleoclimatic questions set out in the drilling proposal
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Search for the standard model Higgs boson in tau final states
We present a search for the standard model Higgs boson using hadronically
decaying tau leptons, in 1 inverse femtobarn of data collected with the D0
detector at the Fermilab Tevatron ppbar collider. We select two final states:
tau plus missing transverse energy and b jets, and tau+ tau- plus jets. These
final states are sensitive to a combination of associated W/Z boson plus Higgs
boson, vector boson fusion and gluon-gluon fusion production processes. The
observed ratio of the combined limit on the Higgs production cross section at
the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of
115 GeV.Comment: publication versio
- …
