78 research outputs found
Improved lower bounds for the ground-state energy of many-body systems
New lower bounds for the binding energy of a quantum-mechanical system of
interacting particles are presented. The new bounds are expressed in terms of
two-particle quantities and improve the conventional bounds of the Hall-Post
type. They are constructed by considering not only the energy in the
two-particle system, but also the structure of the pair wave function. We apply
the formal results to various numerical examples, and show that in some cases
dramatic improvement over the existing bounds is reached.Comment: 29 pages, 5 figures, to be published in Phys. Rev.
About the stability of the dodecatoplet
A new investigation is done of the possibility of binding the "dodecatoplet",
a system of six top quarks and six top antiquarks, using the Yukawa potential
mediated by Higgs exchange. A simple variational method gives a upper bound
close to that recently estimated in a mean-field calculation. It is
supplemented by a lower bound provided by identities among the Hamiltonians
describing the system and its subsystems.Comment: 5 pages, two figures merged, refs. added, typos correcte
Can Close the Supersymmetric Higgs Production Window?
We show that the present limit from CLEO on the inclusive decay provides strong constraints on the parameters of the charged Higgs
sector in two-Higgs-Doublet-Models. Only a slight improvement in the
experimental bound will exclude the region in the Supersymmetric Higgs
parameter space which is inaccessible to collider searches.Comment: 8 pages plus 3 figures (available by request), latex,
ANL-HEP-PR-92-110. Substantial revision to text, results unchange
On the precision of the theoretical predictions for pi pi scattering
In a recent paper, Pelaez and Yndurain evaluate some of the low energy
observables of pi pi scattering and obtain flat disagreement with our earlier
results. The authors work with unsubtracted dispersion relations, so that their
results are very sensitive to the poorly known high energy behaviour of the
scattering amplitude. They claim that the asymptotic representation we used is
incorrect and propose an alternative one. We repeat their calculations on the
basis of the standard, subtracted fixed-t dispersion relations, using their
asymptotics. The outcome fully confirms our earlier findings. Moreover, we show
that the Regge parametrization proposed by these authors for the region above
1.4 GeV violates crossing symmetry: Their ansatz is not consistent with the
behaviour observed at low energies.Comment: Added more material, mostly in Sects. 7, 8 and 9, in support of the
same conclusions. Latex, 28 pages, 3 figure
Simultaneous Softening of sigma and rho Mesons associated with Chiral Restoration
Complex poles of the unitarized pi-pi scattering amplitude in nuclear matter
are studied. Partial restoration of chiral symmetry is modeled by the decrease
of in-medium pion decay constant f*_{pi}.
For large chiral restoration (f*_{pi}/f_{pi} << 1),
2nd sheet poles in the scalar (sigma) and the vector (rho) mesons are both
dictated by the Lambert W function and show universal softening as f*_{pi}
decreases.
In-medium pi-pi cross section receives substantial contribution from the soft
mode and exhibits a large enhancement in low-energy region.
Fate of this universality for small chiral restoration (f*_{pi}/f_{pi} ~ 1)
is also discussed.Comment: 5 pages, 4-eps figures, version accepted by Phys. Rev. C (R) with
minor modification
Monotonicity of quantum ground state energies: Bosonic atoms and stars
The N-dependence of the non-relativistic bosonic ground state energy is
studied for quantum N-body systems with either Coulomb or Newton interactions.
The Coulomb systems are "bosonic atoms," with their nucleus fixed, and the
Newton systems are "bosonic stars". In either case there exists some third
order polynomial in N such that the ratio of the ground state energy to the
respective polynomial grows monotonically in N. Some applications of these new
monotonicity results are discussed
Probing Heavy Higgs Boson Models with a TeV Linear Collider
The last years have seen a great development in our understanding of particle
physics at the weak scale. Precision electroweak observables have played a key
role in this process and their values are consistent, within the Standard Model
interpretation, with a light Higgs boson with mass lower than about 200 GeV. If
new physics were responsible for the mechanism of electroweak symmetry
breaking, there would, quite generally, be modifications to this prediction
induced by the non-standard contributions to the precision electroweak
observables. In this article, we analyze the experimental signatures of a heavy
Higgs boson at linear colliders. We show that a linear collider, with center of
mass energy \sqrt{s} <= 1 TeV, would be very useful to probe the basic
ingredients of well motivated heavy Higgs boson models: a relatively heavy
SM-like Higgs, together with either extra scalar or fermionic degrees of
freedom, or with the mixing of the third generation quarks with non-standard
heavy quark modes.Comment: 21 page
RQM description of the charge form factor of the pion and its asymptotic behavior
The pion charge and scalar form factors, and , are first
calculated in different forms of relativistic quantum mechanics. This is done
using the solution of a mass operator that contains both confinement and
one-gluon-exchange interactions. Results of calculations, based on a one-body
current, are compared to experiment for the first one. As it could be expected,
those point-form, and instant and front-form ones in a parallel momentum
configuration fail to reproduce experiment. The other results corresponding to
a perpendicular momentum configuration (instant form in the Breit frame and
front form with ) do much better. The comparison of charge and scalar
form factors shows that the spin-1/2 nature of the constituents plays an
important role. Taking into account that only the last set of results
represents a reasonable basis for improving the description of the charge form
factor, this one is then discussed with regard to the asymptotic QCD-power-law
behavior . The contribution of two-body currents in achieving the right
power law is considered while the scalar form factor, , is shown to
have the right power-law behavior in any case. The low- behavior of the
charge form factor and the pion-decay constant are also discussed.}Comment: 30 pages, 10 figure
Tests for a Strong Electroweak Sector at Future e^+e^- High Energy Colliders
The study of the scattering at high energy of the gauge bosons W and Z, in
particular longitudinally polarized W and Z, can clarify the mechanism of
spontaneous symmetry breaking in the Standard Model of the electroweak
interactions. Different models of strong electroweak sector, based on the
effective lagrangian approach are briefly reviewed. They include models with no
resonance, with scalar resonance, additional vector and axial-vector
resonances. The effective Lagrangians are derived from the chiral symmetry of
the symmetry breaking sector. Limits on these models from existing
measurements, mainly LEP and Tevatron, are considered. We study also direct and
indirect effects of the new interactions at high energy future e^+e^- linear
colliders, through WW scattering and the direct production of these new vector
gauge bosons.Comment: 74 pages, 19 figures and 4 tables included, Latex, uses epsf, to
appear in La Rivista del Nuovo Cimento, some minor change
Realistic Equations of State for the Primeval Universe
Early universe equations of state including realistic interactions between
constituents are built up. Under certain reasonable assumptions, these
equations are able to generate an inflationary regime prior to the
nucleosynthesis period. The resulting accelerated expansion is intense enough
to solve the flatness and horizon problems. In the cases of curvature parameter
\kappa equal to 0 or +1, the model is able to avoid the initial singularity and
offers a natural explanation for why the universe is in expansion.Comment: 32 pages, 5 figures. Citations added in this version. Accepted EPJ
- …
