6,843 research outputs found

    New Supersymmetric Solutions in N=2 Matter Coupled AdS_3 Supergravities

    Get PDF
    We construct new 1/2 supersymmetric solutions in D=3, N=2, matter coupled, U(1) gauged supergravities and study some of their properties. We do this by employing a quite general supersymmetry breaking condition, from which we also redrive some of the already known solutions. Among the new solutions, we have an explicit non-topological soliton for the non-compact sigma model, a locally flat solution for the compact sigma model and a string-like solution for both types of sigma models. The last one is smooth for the compact scalar manifold.Comment: 1+21 pages, 2 figures, LaTeX2e, JHEP style; v2: added one reference + made minor changes and added a few comments to clarify the presentatio

    Embedding of theories with SU(2|4) symmetry into the plane wave matrix model

    Get PDF
    We study theories with SU(2|4) symmetry, which include the plane wave matrix model, 2+1 SYM on RxS^2 and N=4 SYM on RxS^3/Z_k. All these theories possess many vacua. From Lin-Maldacena's method which gives the gravity dual of each vacuum, it is predicted that the theory around each vacuum of 2+1 SYM on RxS^2 and N=4 SYM on RxS^3/Z_k is embedded in the plane wave matrix model. We show this directly on the gauge theory side. We clearly reveal relationships among the spherical harmonics on S^3, the monopole harmonics and the harmonics on fuzzy spheres. We extend the compactification (the T-duality) in matrix models a la Taylor to that on spheres.Comment: 56 pages, 6 figures, v2:a footnote and references added, section 5.2 improved, typos corrected, v3:typos corrected, v4: some equations are corrected, eq.(G.2) is added, conclusion is unchange

    Information Recovery From Black Holes

    Get PDF
    We argue that if black hole entropy arises from a finite number of underlying quantum states, then any particular such state can be identified from infinity. The finite density of states implies a discrete energy spectrum, and, in general, such spectra are non-degenerate except as determined by symmetries. Therefore, knowledge of the precise energy, and of other commuting conserved charges, determines the quantum state. In a gravitating theory, all conserved charges including the energy are given by boundary terms that can be measured at infinity. Thus, within any theory of quantum gravity, no information can be lost in black holes with a finite number of states. However, identifying the state of a black hole from infinity requires measurements with Planck scale precision. Hence observers with insufficient resolution will experience information loss.Comment: First prize in the Gravity Research Foundation Essay Competition, 8 pages, Late

    On dilatation operator for a renormalizable theory

    Full text link
    Given a renormalizable theory we construct the dilatation operator, in the sense of generator of RG flow of composite operators. The generator is found as a differential operator acting on the space of normal symbols of composite operators in the theory. In the spirit of AdS/CFT correspondence, this operator is interpreted as the Hamiltonian of the dual theory. In the case of a field theory with non-abelian gauge symmetry the resulting system is a matrix model. The one-loop case is analyzed in details and it is shown that we reproduce known results from N=4 supersymmetric Yang-Mills theory.Comment: 26 pages, no figure

    Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies

    Full text link
    We have investigated two-electron bound state formation in a square two-dimensional t-J-U model with hopping anisotropies for zero electron density; these anisotropies are introduced to mimic the hopping energies similar to those expected in stripe-like arrangements of holes and spins found in various transition metal oxides. In this report we provide analytical solutions to this problem, and thus demonstrate that bound-state formation occurs at a critical exchange coupling, J_c, that decreases to zero in the limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be contrasted with J_c/t = 2 for either a one-dimensional chain, or a two-dimensional plane with isotropic hopping. Most importantly, this behaviour is found to be qualitatively similar to that of two electrons on the two-leg ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter result as guidance, we have evaluated the pair correlation function, thus determining that the bound state corresponds to one electron moving along one chain, with the second electron moving along the opposite chain, similar to two electrons confined to move along parallel, neighbouring, metallic stripes. We emphasize that the above results are not restricted to the zero density limit - we have completed an exact diagonalization study of two holes in a 12 X 2 two-leg ladder described by the t-J model and have found that the above-mentioned lowering of the binding energy with hopping anisotropy persists near half filling.Comment: 6 pages, 3 eps figure

    D-Brane Potentials from Multi-Trace Deformations in AdS/CFT

    Full text link
    It is known that certain AdS boundary conditions allow smooth initial data to evolve into a big crunch. To study this type of cosmological singularity, one can use the dual quantum field theory, where the non-standard boundary conditions are reflected by the presence of a multi-trace potential unbounded below. For specific AdS_4 and AdS_5 models, we provide a D-brane (or M-brane) interpretation of the unbounded potential. Using probe brane computations, we show that the AdS boundary conditions of interest cause spherical branes to be pushed to the boundary of AdS in finite time, and that the corresponding potential agrees with the multi-trace deformation of the dual field theory. Systems with expanding spherical D3-branes are related to big crunch supergravity solutions by a phenomenon similar to geometric transition.Comment: 26 pages, 3 figures, v4: a few typos fixed

    Genome-wide analyses of Liberibacter species provides insights into evolution, phylogenetic relationships, and virulence factors.

    Get PDF
    'Candidatus Liberibacter' species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from 'Candidatus Liberibacter asiaticus' (Las). In order to gain greater insight into 'Ca. Liberibacter' biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse 'Ca. Liberibacter' species, including those that can infect citrus. Our phylogenetic analysis differentiates 'Ca. Liberibacter' species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic 'Ca. Liberibacter' species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of 'Ca. Liberibacter' species, the introduction of Las in the United States and identifies promising Las targets for disease management

    Semiclassical Strings Probing NS5 Brane Wrapped on S^5

    Full text link
    We study little string theory on R^1 x S^5, defined by a theory which lives on type IIA N NS5 branes wrapped on S^5, using its supergravity dual. In particular we study semiclassical rotating closed strings in this background. We also consider Penrose limit of this background that leads to a plane wave on which string theory is exactly solvable.Comment: 14 pages, Latex, v2: typos corrected, Refs. added, v3: typos correcte

    Holographic Coulomb branch vevs

    Full text link
    We compute holographically the vevs of all chiral primary operators for supergravity solutions corresponding to the Coulomb branch of N=4 SYM and find exact agreement with the corresponding field theory computation. Using the dictionary between 10d geometries and field theory developed to extract these vevs, we propose a gravity dual of a half supersymmetric deformation of N=4 SYM by certain irrelevant operators.Comment: 16 pages, v2 corrections in appendi

    A Fermi Surface Model for Large Supersymmetric AdS_5 Black Holes

    Full text link
    We identify a large family of 1/16 BPS operators in N=4 SYM that qualitatively reproduce the relations between charge, angular momentum and entropy in regular supersymmetric AdS_5 black holes when the main contribution to their masses is given by their angular momentum.Comment: 32 pages, 6 figures, LaTeX uses JHEP3 class; ver 2- added acknowledgment, minor change
    corecore