2,194 research outputs found
Formation of offshore tidal sandbanks triggered by a gasmined bed subsidence
Offshore gasmining is an example of a human intervention with a morphological impact. On land, it is usually attended with a dish-like bed depression. We show that, if located at sea, such a bed depression can become morphodynamically active by triggering mechanisms related to tidal sand bank formation. To that end, a simple morphological model is considered which describes an erodible bed subject to a tidal wave in a shallow sea. The continuous subsidence is modelled by a sink term in the sediment balance. Then, a linear approximation is carried out to describe the bed evolution after the onset of subsidence. The results, presented in physical space, show that the subsidence triggers the formation of a sand bank pattern that gradually spreads around the centre of subsidence, at a rate that may go up to 160 m year¿1, depending on the tidal transport rate and the tidal eccentricity. The dimension of the depression does not affect the spreading rate nor the orientation of the sand banks, but it does influence their spacing. The main conclusion is that the horizontal extent of the area influenced by the bed depression by far exceeds that of the direct subsidence, thus showing that bed depressions on land and at sea indeed behave in fundamentally different ways. The results suggest that nonlinear effects are worthwhile to be investigated in order to describe finite amplitude development of sand banks as well as the interaction between subsidence and bed forms
Hydraulic Resistance of Vegetation in River Flow Applications
Proceedings of the Seventh International Conference on Hydroscience and Engineering, Philadelphia, PA, September 2006. http://hdl.handle.net/1860/732If vegetated regions become part of a river’s flow field, the hydraulic resistance of vegetation affects
the overall conveyance. Several descriptions exist to describe this type of flow; among them are
empirical relations and relations that are process-based. In the current work three expressions are
considered that have equal input parameters, similar levels of complexity but different theoretical
backgrounds. The performance of the three methods is evaluated by comparison with flow
measurements (collected from literature), and limits are given for their practical use
Een modelonderzoek naar het mechanisme van de natuurlijke verdichting van een zandgrond
In het kader van het onderzoek aan bodemverdichting na een losmakende bewerking door de afdeling bodemtechniek, wil men nagaan welke de mechanismen van natuurlijke bodemverdichting zijn
A simple morphodynamic model for sand banks and large-scale sand pits subject to asymetrical tides
We extend existing knowledge on theoretical growth characteristics of tidal sand banks by including asymmetrical tides with an M0, M2 and M4-constituent, thus allowing for migration. Furthermore, in the context of the continuously increasing demand on the Dutch sand market, we show that creating a large-scale offshore sand pit has long-term morphological implications, both for the pit itself and the surrounding area. The pit deepens, while around it a sand bank pattern emerges, spreading at a constant rate of the order of tens to hundred metres per year
Using a sand wave model for optimal monitoring of navigation depth
In the Euro Channel to Rotterdam Harbor, sand waves reduce the navigable depth to an unacceptable level. To avoid the risk of grounding, the navigation depth is monitored and sand waves that reduce the navigation depth unacceptably are dredged. After the dredging, the sand waves slowly regain their original height. To reduce the high costs of surveying and dredging, the North Sea Service of the Department of Transport, PublicWorks andWater Management, is implementing a Decision Support System to reduce the required amount of surveys and provide optimal information on the necessity to dredge. Currently, the system predicts the growth of sand waves using a linear trend. The trend is determined from observations using a Kalman-filter including geo-statistical components to incorporate spatial dependencies. This works well for sand waves that are close to their maximum height. After dredging however, the sand wave height is far from its equilibrium and the growth rate is much higher, making the linear prediction worthless. Here we show that replacing the linear trend with a landau equation improves the predictions of the regeneration. Comparison shows that the landau equation predicts the crest evolution better than the linear equation for both undisturbed sand waves and dredged sand waves, with an root mean square error that is 25% less
Comparison between predicted and observed sand waves and sand banks in the North Sea
For the first time a prediction model of regular morphological patterns on the seabed was tested against observations of sand wave and sand bank occurrence in the entire North Sea. The model, which originates from first physical principles, predicts this occurrence via two dimensionless parameters on the basis of the water depth, the tidal velocity amplitude, the level of zero intercept above the seabed (z0), and a viscosity variation parameter alt epsilon. The latter two quantities were varied in a number of predictions for the entire North Sea, whereas for the first two, local values were used. The range of realistic values of alt epsilon and z0 was large enough to let these two parameters distinguish between the possible (combinations of) bed forms, as is shown in the shallower southern bight of the North Sea. The results were more sensitive to variations in z0 than in alt epsilon. A slightly more detailed approach focused on sand waves only in the southern North Sea and estimated local values for z0 using depth information. Quantification of the results showed that the model was able to predict the contours of the sand wave patches, but it could not account for the absence of the bed features within this area. The type of bed deposit partly explains the smaller-scale variation. The work confirms the validity of the theoretical bed form prediction model and verifies the hypothesis that the large-scale seabed features are formed as free instabilities of tide-topography interactions
Predicting the occurrence of sand banks in the North Sea
Sand banks have a wavelength between 1 and 10 km, and they are up to several tens of meters high. Also, sand banks may have an impact on large-scale human activities that take place in the North Sea like sand mining, shipping, offshore wind farms, etc. Therefore, it is important to know where sand banks occur and what their natural behavior is. Here, we use an idealized model to predict the occurrence of sand banks in the North Sea. The aim of the paper is to research to what extent the model is able to predict the occurrence of sand banks in the North Sea. We apply a sensitivity analysis to optimize the model results for a North Sea environment. The results show that the model correctly predicts whether or not sand banks occur for two thirds of the North Sea area
Getting grip on complex water issues? : a case study: Rotterdam Mainport, Appropriate Assessment Wadden Sea
In Dutch water systems many human interventions are carried out. These interventions are designed to achieve management goals, like increase protection against flooding, improve environmental quality and/or stimulate the national economy. Decision-makers involved in these kinds of plans have to deal with ecological effects, physical effects, economic costs and benefits and technical feasibility. Furthermore, they operate within a complex web of interactions between policy, regulations, and social and political processes. This PhD-project aims at assisting decision-makers in constructing assessments of the impact of future human interventions in water systems
The generation of offshore tidal sand banks and sand waves
A simple morphological model is considered which describes the interaction between a tidal flow and an erodible bed in a shallow sea. The basic state of this model describes a spatially uniform tide over a flat bottom where the flow vector is represented as a tidal ellipse. The linear stability of this solution is analysed with respect to bed form perturbations. Results are presented for both a uni-directional and circular tide. In the former case the wave-length and the orientation of the fastest growing bed mode agree well with those of tidal sand banks. However, this model only predicts the growth of large-scale sand ridges. With a simplified numerical model we tentatively show that the effects of secondary currents on the sediment transport trigger the formation of instabilities at an essentially smaller scale, viz, sand waves. Another limitation of a model with uni-directional tides is that no selective modes found are the first to become unstable if the model parameters are varied. In the case of a circular tide, critical model parameters are found below which the basic state is stable. We conclude that this provides a starting point for the development of a weakly non-linear analysis, which will yield information on the amplitude behaviour of marginally growing bed forms
- …
