726 research outputs found
Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2
Ocean acidification (OA) has important implications for the persistence of coral reef ecosystems, due to potentially negative effects on biomineralization. Many coral reefs are dynamic with respect to carbonate chemistry, and experience fluctuations in pCO2 that exceed OA projections for the near future. To understand the influence of dynamic pCO2 on an important reef calcifier, we tested the response of the crustose coralline alga Porolithon onkodes to oscillating pCO2. Individuals were exposed to ambient (400 ??atm), high (660 ??atm), or variable pCO2 (oscillating between 400/660 ??atm) treatments for 14 days. To explore the potential for coralline acclimatization, we collected individuals from low and high pCO2 variability sites (upstream and downstream respectively) on a back reef characterized by unidirectional water flow in Moorea, French Polynesia. We quantified the effects of treatment on algal calcification by measuring the change in buoyant weight, and on algal metabolism by conducting sealed incubations to measure rates of photosynthesis and respiration. Net photosynthesis was higher in the ambient treatment than the variable treatment, regardless of habitat origin, and there was no effect on respiration or gross photosynthesis. Exposure to high pCO2 decreased P. onkodes calcification by >70%, regardless of the original habitat. In the variable treatment, corallines from the high variability habitat calcified 42% more than corallines from the low variability habitat. The significance of the original habitat for the coralline calcification response to variable, high pCO2 indicates that individuals existing in dynamic pCO2 habitats may be acclimatized to OA within the scope of in situ variability. These results highlight the importance of accounting for natural pCO2 variability in OA manipulations, and provide insight into the potential for plasticity in habitat and species-specific responses to changing ocean chemistry.Funding was provided by grants from the National Science Foundation (OCE-0417412, OCE-10-26852, OCE-1041270) and gifts from the Gordon and Betty Moore Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
The “Flexi-Chamber”: A Novel Cost-Effective In Situ Respirometry Chamber for Coral Physiological Measurements
Coral reefs are threatened worldwide, with environmental stressors increasingly affecting the ability of reef-building corals to sustain growth from calcification (G), photosynthesis (P) and respiration (R). These processes support the foundation of coral reefs by directly influencing biogeochemical nutrient cycles and complex ecological interactions and therefore represent key knowledge required for effective reef management. However, metabolic rates are not trivial to quantify and typically rely on the use of cumbersome in situ respirometry chambers and/or the need to remove material and examine ex situ, thereby fundamentally limiting the scale, resolution and possibly the accuracy of the rate data. Here we describe a novel low-cost in situ respirometry bag that mitigates many constraints of traditional glass and plexi-glass incubation chambers. We subsequently demonstrate the effectiveness of our novel "Flexi-Chamber" approach via two case studies: 1) the Flexi-Chamber provides values of P, R and G for the reef-building coral Siderastrea cf. stellata collected from reefs close to Salvador, Brazil, which were statistically similar to values collected from a traditional glass respirometry vessel; and 2) wide-scale application of obtaining P, R and G rates for different species across different habitats to obtain inter- and intra-species differences. Our novel cost-effective design allows us to increase sampling scale of metabolic rate measurements in situ without the need for destructive sampling and thus significantly expands on existing research potential, not only for corals as we have demonstrated here, but also other important benthic groups
Cortical and cerebellar activation induced by reflexive and voluntary saccades
Reflexive saccades are driven by visual stimulation whereas voluntary saccades require volitional control. Behavioral and lesional studies suggest that there are two separate mechanisms involved in the generation of these two types of saccades. This study investigated differences in cerebral and cerebellar activation between reflexive and self-paced voluntary saccadic eye movements using functional magnetic resonance imaging. In two experiments (whole brain and cerebellum) using the same paradigm, differences in brain activations induced by reflexive and self-paced voluntary saccades were assessed. Direct comparison of the activation patterns showed that the frontal eye fields, parietal eye field, the motion-sensitive area (MT/V5), the precuneus (V6), and the angular and the cingulate gyri were more activated in reflexive saccades than in voluntary saccades. No significant difference in activation was found in the cerebellum. Our results suggest that the alleged separate mechanisms for saccadic control of reflexive and self-paced voluntary are mainly observed in cerebral rather than cerebellar areas
Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation
Although genome-wide association studies have identified over 100 risk loci that explain ~33% of familial risk for prostate cancer (PrCa), their functional effects on risk remain largely unknown. Here we use genotype data from 59,089 men of European and African American ancestries combined with cell-type-specific epigenetic data to build a genomic atlas of single-nucleotide polymorphism (SNP) heritability in PrCa. We find significant differences in heritability between variants in prostate-relevant epigenetic marks defined in normal versus tumour tissue as well as between tissue and cell lines. The majority of SNP heritability lies in regions marked by H3k27 acetylation in prostate adenoc7arcinoma cell line (LNCaP) or by DNaseI hypersensitive sites in cancer cell lines. We find a high degree of similarity between European and African American ancestries suggesting a similar genetic architecture from common variation underlying PrCa risk. Our findings showcase the power of integrating functional annotation with genetic data to understand the genetic basis of PrCa
Neutrinos
229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms
The impact of provider surgical volumes on survival in children with primary tumors of the central nervous system—a population-based study
Combining Feature Selection and Integration—A Neural Model for MT Motion Selectivity
Background: The computation of pattern motion in visual area MT based on motion input from area V1 has been investigated in many experiments and models attempting to replicate the main mechanisms. Two different core conceptual approaches were developed to explain the findings. In integrationist models the key mechanism to achieve pattern selectivity is the nonlinear integration of V1 motion activity. In contrast, selectionist models focus on the motion computation at positions with 2D features. Methodology/Principal Findings: Recent experiments revealed that neither of the two concepts alone is sufficient to explain all experimental data and that most of the existing models cannot account for the complex behaviour found. MT pattern selectivity changes over time for stimuli like type II plaids from vector average to the direction computed with an intersection of constraint rule or by feature tracking. Also, the spatial arrangement of the stimulus within the receptive field of a MT cell plays a crucial role. We propose a recurrent neural model showing how feature integration and selection can be combined into one common architecture to explain these findings. The key features of the model are the computation of 1D and 2D motion in model area V1 subpopulations that are integrated in model MT cells using feedforward and feedback processing. Our results are also in line with findings concerning the solution of the aperture problem. Conclusions/Significance: We propose a new neural model for MT pattern computation and motion disambiguation that i
The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 30 (2011): 321-328, doi:10.1007/s00338-010-0697-z.Rising concentrations of atmospheric CO2 are changing the carbonate chemistry of the
oceans, a process known as ocean acidification (OA). Absorption of this CO2 by the surface oceans
is increasing the amount of total dissolved inorganic carbon (DIC) and bicarbonate ion (HCO3
-)
available for marine calcification, yet is simultaneously lowering the seawater pH and carbonate
ion concentration ([CO3
2-]), and thus the saturation state of seawater with respect to aragonite
(Ωar). We investigated the relative importance of [HCO3
-] versus [CO3
2-] for early calcification by
new recruits (primary polyps settled from zooxanthellate larvae) of two tropical coral species,
Favia fragum and Porites astreoides. The polyps were reared over a range of Ωar values, which
were manipulated by both acid-addition at constant pCO2 (decreased total [HCO3
-] and [CO3
2-])
and by pCO2 elevation at constant alkalinity (increased [HCO3
-], decreased [CO3
2-]). Calcification
after two weeks was quantified by weighing the complete skeleton (corallite) accreted by each
polyp over the course of the experiment. Both species exhibited the same negative response to
decreasing [CO3
2-] whether Ωar was lowered by acid-addition or by pCO2 elevation - calcification
did not follow total DIC or [HCO3
-]. Nevertheless, the calcification response to decreasing [CO3
2-]
was non-linear. A statistically significant decrease in calcification was only detected between Ωar =
< 2.5 and Ωar = 1.1 – 1.5, where calcification of new recruits was reduced by 22 – 37 % per 1.0
decrease in Ωar. Our results differ from many previous studies that report a linear coral
calcification response to OA, and from those showing that calcification increases with increasing
[HCO3
-]. Clearly, the coral calcification response to OA is variable and complex. A deeper
understanding of the biomineralization mechanisms and environmental conditions underlying these
3
variable responses is needed to support informed predictions about future OA impacts on corals
and coral reefs.This study was supported by NSF award 0648157 (Cohen and McCorkle), NSF 1041106 (Cohen,
McCorkle), NSF 1041052 (de Putron), the VITA foundation (de Putron), WHOI Ocean Life
Institute (Cohen), PEI and EEB Departments at Princeton University, Bill and Anne Charrier, and
the Anthony B. Evnin, Dean’s Roundtable, and Edmund Hayes Sr. senior thesis funds (Dillon)
Rearrangement of Retinogeniculate Projection Patterns after Eye-Specific Segregation in Mice
It has been of interest whether and when the rearrangement of neuronal circuits can be induced after projection patterns are formed during development. Earlier studies using cats reported that the rearrangement of retinogeniculate projections could be induced even after eye-specific segregation has occurred, but detailed and quantitative characterization of this rearrangement has been lacking. Here we delineate the structural changes of retinogeniculate projections in the C57BL/6 mouse in response to monocular enucleation (ME) after eye-specific segregation. When ME was performed after eye-specific segregation, rearrangement of retinogeniculate axons in the dorsal lateral geniculate nucleus (dLGN) was observed within 5 days. Although this rearrangement was observed both along the dorsomedial-ventrolateral and outer-inner axes in the dLGN, it occurred more rapidly along the outer-inner axis. We also examined the critical period for this rearrangement and found that the rearrangement became almost absent by the beginning of the critical period for ocular dominance plasticity in the primary visual cortex. Taken together, our findings serve as a framework for the assessment of phenotypes of genetically altered mouse strains as well as provide insights into the mechanisms underlying the rearrangement of retinogeniculate projections
Pseudohypoparathyroidism Type Ib Associated with Novel Duplications in the GNAS Locus
Context:
Pseudohypoparathyroidism type 1b (PHP-Ib) is characterized by renal resistance to PTH (and, sometimes, a mild resistance to TSH) and absence of any features of Albright's hereditary osteodystrophy. Patients with PHP-Ib suffer of defects in the methylation pattern of the complex GNAS locus. PHP-Ib can be either sporadic or inherited in an autosomal dominant pattern. Whereas familial PHP-Ib is well characterized at the molecular level, the genetic cause of sporadic PHP-Ib cases remains elusive, although some molecular mechanisms have been associated with this subtype.Objective:
The aim of the study was to investigate the molecular and imprinting defects in the GNAS locus in two unrelated patients with PHP-Ib.Design:
We have analyzed the GNAS locus by direct sequencing, Methylation-Specific Multiplex Ligation-dependent Probe Amplification, microsatellites, Quantitative Multiplex PCR of Short Fluorescent fragments and array-Comparative Genomic Hybridization studies in order to characterize two unrelated families with clinical features of PHP-Ib.Results:
We identified two duplications in the GNAS region in two patients with PHP-Ib: one of them, comprising ~320 kb, occurred ‘de novo’ in the patient, whereas the other one, of ~179 kb in length, was inherited from the maternal allele. In both cases, no other known genetic cause was observed.Conclusion:
In this article, we describe the to-our-knowledge biggest duplications reported so far in the GNAS region. Both are associated to PHP-Ib, one of them occurring ‘de novo’ and the other one being maternally inherited.This work was partially supported by Grants IT-795-13 and IT-472-07 from the Basque Department of Education (http://www.hezkuntza.ejgv.euskadi.net/r43-2591/es). TV is supported by the FPI Program of the University of Basque Country (UPV-EHU, http://www.ehu.es/p200-home/es)
- …
