155 research outputs found
Pollutant dispersion in a developing valley cold-air pool
Pollutants are trapped and accumulate within cold-air pools, thereby affecting air quality. A numerical model is used to quantify the role of cold-air-pooling processes in the dispersion of air pollution in a developing cold-air pool within an alpine valley under decoupled stable conditions. Results indicate that the negatively buoyant downslope flows transport and mix pollutants into the valley to depths that depend on the temperature deficit of the flow and the ambient temperature structure inside the valley. Along the slopes, pollutants are generally entrained above the cold-air pool and detrained within the cold-air pool, largely above the ground-based inversion layer. The ability of the cold-air pool to dilute pollutants is quantified. The analysis shows that the downslope flows fill the valley with air from above, which is then largely trapped within the cold-air pool, and that dilution depends on where the pollutants are emitted with respect to the positions of the top of the ground-based inversion layer and cold-air pool, and on the slope wind speeds. Over the lower part of the slopes, the cold-air-pool-averaged concentrations are proportional to the slope wind speeds where the pollutants are emitted, and diminish as the cold-air pool deepens. Pollutants emitted within the ground-based inversion layer are largely trapped there. Pollutants emitted farther up the slopes detrain within the cold-air pool above the ground-based inversion layer, although some fraction, increasing with distance from the top of the slopes, penetrates into the ground-based inversion layer.Peer reviewe
Wake response to an ocean-feedback mechanism: Madeira Island case study
This discussion focused on the numerical study of a wake episode. The Weather
Research and Forecasting model was used in a downscale mode. The current
literature focuses the discussion on the adiabatic dynamics of atmospheric
wakes. Changes in mountain height and consequently on its relation to the
atmospheric inversion layer should explain the shift in wake regimes: from a
'strong-wake' to a 'weak-wake' scenario. Nevertheless, changes in SST
variability can also induce similar regime shifts. Increase in evaporation,
contributes to increase convection and thus to an uplift of the stratified
atmospheric layer, above the critical height, with subsequent internal gravity
wave activity.Comment: Under review proces
Phosphoinositide-binding interface proteins involved in shaping cell membranes
The mechanism by which cell and cell membrane shapes are created has long been a subject of great interest. Among the phosphoinositide-binding proteins, a group of proteins that can change the shape of membranes, in addition to the phosphoinositide-binding ability, has been found. These proteins, which contain membrane-deforming domains such as the BAR, EFC/F-BAR, and the IMD/I-BAR domains, led to inward-invaginated tubes or outward protrusions of the membrane, resulting in a variety of membrane shapes. Furthermore, these proteins not only bind to phosphoinositide, but also to the N-WASP/WAVE complex and the actin polymerization machinery, which generates a driving force to shape the membranes
Sensitivity of ITCZ configuration to cumulus convective parameterizations on an aqua planet
On the Velocity Gradient in Stably Stratified Sheared Flows. Part 2: Observations and Models
The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer
Measurements of atmospheric turbulence made over the Arctic pack ice during
the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are used to
determine the limits of applicability of Monin-Obukhov similarity theory (in
the local scaling formulation) in the stable atmospheric boundary layer. Based
on the spectral analysis of wind velocity and air temperature fluctuations, it
is shown that, when both of the gradient Richardson number, Ri, and the flux
Richardson number, Rf, exceed a 'critical value' of about 0.20 - 0.25, the
inertial subrange associated with the Richardson-Kolmogorov cascade dies out
and vertical turbulent fluxes become small. Some small-scale turbulence
survives even in this supercritical regime, but this is non-Kolmogorov
turbulence, and it decays rapidly with further increasing stability. Similarity
theory is based on the turbulent fluxes in the high-frequency part of the
spectra that are associated with energy-containing/flux-carrying eddies.
Spectral densities in this high-frequency band diminish as the
Richardson-Kolmogorov energy cascade weakens; therefore, the applicability of
local Monin-Obukhov similarity theory in stable conditions is limited by the
inequalities Ri < Ri_cr and Rf < Rf_cr. However, it is found that Rf_cr = 0.20
- 0.25 is a primary threshold for applicability. Applying this prerequisite
shows that the data follow classical Monin-Obukhov local z-less predictions
after the irrelevant cases (turbulence without the Richardson-Kolmogorov
cascade) have been filtered out.Comment: Boundary-Layer Meteorology (Manuscript submitted: 16 February 2012;
Accepted: 10 September 2012
Concentration profiles of particles settling in the neutral and stratified atmospheric boundary layer
The impact of training and working conditions on junior doctors' intention to leave clinical practice
Background: The shortage of physicians is an evolving problem throughout the world. In this study we aimed to identify to what extent junior doctors' training and working conditions determine their intention to leave clinical practice after residency training. Methods: A prospective cohort study was conducted in 557 junior doctors undergoing residency training in German hospitals. Self-reported specialty training conditions, working conditions and intention to leave clinical practice were measured over three time points. Scales covering training conditions were assessed by structured residency training, professional support, and dealing with lack of knowledge; working conditions were evaluated by work overload, job autonomy and social support, based on the Demand-Control-Support model. Multivariate ordinal logistic regression analyses with random intercept for longitudinal data were applied to determine the odds ratio of having a higher level of intention to leave clinical practice. Results: In the models that considered training and working conditions separately to predict intention to leave clinical practice we found significant baseline effects and change effects. After modelling training and working conditions simultaneously, we found evidence that the change effect of job autonomy (OR 0.77, p = .005) was associated with intention to leave clinical practice, whereas for the training conditions, only the baseline effects of structured residency training (OR 0.74, p = .017) and dealing with lack of knowledge (OR 0.74, p = .026) predicted intention to leave clinical practice. Conclusions: Junior doctors undergoing specialty training experience high workload in hospital practice and intense requirements in terms of specialty training. Our study indicates that simultaneously improving working conditions over time and establishing a high standard of specialty training conditions may prevent junior doctors from considering leaving clinical practice after residency training
An Improved Approach for Parameterizing Surface-Layer Turbulent Transfer Coefficients in Numerical Models
Correction of a Non-orthogonal, Three-Component Sonic Anemometer for Flow Distortion by Transducer Shadowing
- …
