20,119 research outputs found
Realization of Pan Jiazheng′s extremum principle with optimization methods
2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Angle-of-Arrival Estimation Using Different Phase Shifts Across Subarrays in Localized Hybrid Arrays
© 1997-2012 IEEE. Angle-of-arrival (AoA) estimation, even for a single arriving signal, in a localized hybrid array is challenging and time-consuming due to a phase ambiguity problem. Subarrays use the same phase shifting values conventionally to exploit cross correlation between them. This results in the requirement of scanning multiple angles over excessively long periods to resolve the phase ambiguity problem. In this letter, we propose an approach which allows subarrays to use different phase shifts per estimation and can resolve the ambiguity problem by directly estimating the desired AoA parameter. This can potentially speed up the estimation and improve the estimation performance significantly. Simulation results are provided to demonstrate the effectiveness of the proposed approach
Big Data Analysis of Population Flow between TfL Oyster and Bicycle Hire Networks in London
This study seeks to undertake an initial analysis of the likely flow of people between the Tube to bicycle
hire network in London. Data for the two networks were extracted for a month (April and June 2012) in
order to establish the strength of the relationship between them. The results quantify the extent to which
Tube commuters impact the capacity utilization of the bicycle network. We expect this research to have
implications in the expansion and maintenance of bicycle hire in London and similar schemes around
the world
Age of the Laschamp excursion determined by U-Th dating of a speleothem geomagnetic record from North America
The Laschamp geomagnetic excursion was the first short-lived polarity event recognized and described in the paleomagnetic record, and to date remains the most studied geomagnetic event of its kind. In addition to its geophysical significance, the Laschamp is an important global geochronologic marker. The Laschamp excursion
occurred around the time of the demise of Homo neanderthalensis, in conjunction with high-amplitude, rapid climatic oscillations leading into the Last Glacial Maximum, and coeval with a major supervolcano eruption in the Mediterranean. Thus, precise determination of the timing and duration of the Laschamp excursion would help in elucidating major scientific questions situated at the intersection of geology, paleoclimatology, and anthropology. Here we present a North American speleothem geomagnetic record of the Laschamp excursion that is directly dated using a combination of high-precision 230Th dates and annual layer counting using confocal microscopy. We have determined a maximum excursion duration that spans the interval 42,250-39,700 yr BP, and an age of 41,100 ± 350 yr BP for the main phase of the excursion, during which the virtual geomagnetic pole was situated at the southernmost latitude in the record. Our chronology provides the first age bracketing of the Laschamp excursion using radioisotopic dating, and improves on previous age determinations based on 40Ar/39Ar dating of lava flows, and orbitally-tuned sedimentary and ice-core records.This project was funded by NSF-EAR grant 1316385, a University of Minnesota McKnight Land Grant Professorship to JMF, and ERC grant 320750. Confocal microscopy was performed at the University of Minnesota Imaging Centers. We are grateful to John Geissman, Brad Singer, and James Channell for their constructive reviews. This is Institute for Rock Magnetism contribution 1506.This is the author accepted manuscript. The final version is available from the Geological Society of America via http://dx.doi.org/10.1130/G37490.
BKM Lie superalgebra for the Z_5 orbifolded CHL string
We study the Z_5-orbifolding of the CHL string theory by explicitly
constructing the modular form tilde{Phi}_2 generating the degeneracies of the
1/4-BPS states in the theory. Since the additive seed for the sum form is a
weak Jacobi form in this case, a mismatch is found between the modular forms
generated from the additive lift and the product form derived from threshold
corrections. We also construct the BKM Lie superalgebra, tilde{G}_5,
corresponding to the modular form tilde{Delta}_1 (Z) = tilde{Phi}_2 (Z)^{1/2}
which happens to be a hyperbolic algebra. This is the first occurrence of a
hyperbolic BKM Lie superalgebra. We also study the walls of marginal stability
of this theory in detail, and extend the arithmetic structure found by Cheng
and Dabholkar for the N=1,2,3 orbifoldings to the N=4,5 and 6 models, all of
which have an infinite number of walls in the fundamental domain. We find that
analogous to the Stern-Brocot tree, which generated the intercepts of the walls
on the real line, the intercepts for the N >3 cases are generated by linear
recurrence relations. Using the correspondence between the walls of marginal
stability and the walls of the Weyl chamber of the corresponding BKM Lie
superalgebra, we propose the Cartan matrices for the BKM Lie superalgebras
corresponding to the N=5 and 6 models.Comment: 30 pages, 2 figure
A computational framework to emulate the human perspective in flow cytometric data analysis
Background: In recent years, intense research efforts have focused on developing methods for automated flow cytometric data analysis. However, while designing such applications, little or no attention has been paid to the human perspective that is absolutely central to the manual gating process of identifying and characterizing cell populations. In particular, the assumption of many common techniques that cell populations could be modeled reliably with pre-specified distributions may not hold true in real-life samples, which can have populations of arbitrary shapes and considerable inter-sample variation.
<p/>Results: To address this, we developed a new framework flowScape for emulating certain key aspects of the human perspective in analyzing flow data, which we implemented in multiple steps. First, flowScape begins with creating a mathematically rigorous map of the high-dimensional flow data landscape based on dense and sparse regions defined by relative concentrations of events around modes. In the second step, these modal clusters are connected with a global hierarchical structure. This representation allows flowScape to perform ridgeline analysis for both traversing the landscape and isolating cell populations at different levels of resolution. Finally, we extended manual gating with a new capacity for constructing templates that can identify target populations in terms of their relative parameters, as opposed to the more commonly used absolute or physical parameters. This allows flowScape to apply such templates in batch mode for detecting the corresponding populations in a flexible, sample-specific manner. We also demonstrated different applications of our framework to flow data analysis and show its superiority over other analytical methods.
<p/>Conclusions: The human perspective, built on top of intuition and experience, is a very important component of flow cytometric data analysis. By emulating some of its approaches and extending these with automation and rigor, flowScape provides a flexible and robust framework for computational cytomics
A clean signal for a top-like isosinglet fermion at the Large Hadron Collider
We predict a clean signal at the Large Hadron Collider (=14 TeV for
a scenario where there is a top-like, charge +2/3 vectorlike isosinglet
fermion. Such a quark, via mixing with the standard model top, can undergo
decays via both flavour-changing Z-boson coupling and flavour-changing Yukawa
interactions. We concentrate on the latter channel, and study the situation
where, following its pair-production, the heavy quark pair gives rise to two
tops and two Higgs boson. We show that the case where each Higgs decays in the
channel, there can be a rather distinct and background-free signal
that can unveil the existence of the vectorlike isosinglet quark of this kind.Comment: 14 pages, 5 figures, 4 table
Scallop swimming kinematics and muscle performance: modelling the effects of "within-animal" variation in temperature sensitivity
Escape behaviour was investigated in Queen scallops (Aequipecten opercularis) acclimated to 5, 10 or 15 degrees C and tested at their acclimation temperature. Scallops are active molluscs, able to escape from predators by jet-propelled swimming using a striated muscle working in opposition to an elastic hinge ligament. The first cycle of the escape response was recorded using high-speed video ( 250 Hz) and whole-animal velocity and acceleration determined. Muscle shortening velocity, force and power output were calculated using measurements of valve movement and jet area, and a simple biomechanical model. The average shortening speed of the adductor muscle had a Q(10) of 2.04, significantly reducing the duration of the jetting phase of the cycle with increased temperature. Muscle lengthening velocity and the overall duration of the clap cycle were changed little over the range 5 - 15 degrees C, as these parameters were controlled by the relatively temperature-insensitive, hinge ligament. Improvements in the average power output of the adductor muscle over the first clap cycle ( 222 vs. 139 W kg(-1) wet mass at 15 and 5 degrees C respectively) were not translated into proportional increases in overall swimming velocity, which was only 32% higher at 15 degrees C ( 0.37m s(-1)) than 5 degrees C (0.28 m s(-1))
Superpartner spectrum of minimal gaugino-gauge mediation
We evaluate the sparticle mass spectrum in the minimal four-dimensional
construction that interpolates between gaugino and ordinary gauge mediation at
the weak scale. We find that even in the hybrid case -- when the messenger
scale is comparable to the mass of the additional gauge particles -- both the
right-handed as well as the left-handed sleptons are lighter than the bino in
the low-scale mediation regime. This implies a chain of lepton production and,
consequently, striking signatures that may be probed at the LHC already in the
near future.Comment: 8 pages, 3 figures; V2: refs and a few comments added; V3 title
change
Deformations of Lifshitz holography
The simplest gravity duals for quantum critical theories with z=2 `Lifshitz'
scale invariance admit a marginally relevant deformation. Generic black holes
in the bulk describe the field theory with a dynamically generated momentum
scale Lambda as well as finite temperature T. We describe the thermodynamics of
these black holes in the quantum critical regime where T >> Lambda^2. The
deformation changes the asymptotics of the spacetime mildly and leads to
intricate UV sensitivities of the theory which we control perturbatively in
Lambda^2/T.Comment: 1+27 pages, 12 figure
- …
