13 research outputs found

    Genomic-Bioinformatic Analysis of Transcripts Enriched in the Third-Stage Larva of the Parasitic Nematode Ascaris suum

    Get PDF
    Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3) of A. suum was constructed by suppressive-subtractive hybridization (SSH), and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498) shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer). Using gene ontology (GO), 235 of these molecules were assigned to ‘biological process’ (n = 68), ‘cellular component’ (n = 50), or ‘molecular function’ (n = 117). Of the 91 clusters assembled, 56 molecules (61.5%) had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5%) had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors), and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein–protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50) to be involved in apoptosis and insulin signaling (2%), ATP synthesis (2%), carbon metabolism (6%), fatty acid biosynthesis (2%), gap junction (2%), glucose metabolism (6%), or porphyrin metabolism (2%), although 34 (68%) of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%), anchored (2%), and/or transmembrane (12%) proteins. Functionally, 17 (34%) of them were predicted to be associated with (non-wild-type) RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb) (13 types; 58.8%), larval arrest (Lva) (23.5%) and larval lethality (Lvl) (47%). A genetic interaction network was predicted for these 17 C. elegans orthologues, revealing highly significant interactions for nine molecules associated with embryonic and larval development (66.9%), information storage and processing (5.1%), cellular processing and signaling (15.2%), metabolism (6.1%), and unknown function (6.7%). The potential roles of these molecules in development are discussed in relation to the known roles of their homologues/orthologues in C. elegans and some other nematodes. The results of the present study provide a basis for future functional genomic studies to elucidate molecular aspects governing larval developmental processes in A. suum and/or the transition to parasitism

    Exploring the roles of academic self-concept and perseverance of effort in self-assessment practices

    Get PDF
    Based on the self-system processes model of motivation, we explored the mediating role of academic self-concept in the relationship between perseverance of effort and self-assessment. The results showed that perseverance of effort has a positive but not statistically significant association with self-assessment when controlling academic self-concept. The results supported our hypotheses that academic self-concept, whether at the domain-specific or component-specific level, significantly mediated the effect of the perseverance of effort on self-assessment, lending empirical support to the closer conceptual link between self-perceptions and self-assessment practices in learning. The results contribute to the literature of the three research lines (grit, academic self-concept and self-assessment) and suggest that academic self-concept enhancement interventions are beneficial not only to academic achievement based on the reciprocal relationship that has been well documented in the self-concept literature but also to self-assessment in the light of the self-system processes model of motivation

    Massively Parallel Sequencing and Analysis of the Necator americanus Transcriptome

    Get PDF
    The blood-feeding hookworm Necator americanus infects hundreds of millions of people. To elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of adult Necator americanus was studied using next-generation sequencing and in silico analyses. Contigs (n = 19,997) were assembled from the sequence data; 6,771 of them had known orthologues in the free-living nematode Caenorhabditis elegans, and most encoded proteins with WD40 repeats (10.6%), proteinase inhibitors (7.8%) or calcium-binding EF-hand proteins (6.7%). Bioinformatic analyses inferred that C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%), oxidative phosphorylation (63%) and/or proteases (60%). Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. Essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have human homologues. These candidate targets were inferred to be linked to mitochondrial metabolism or amino acid synthesis. This investigation provides detailed insights into the transcriptome of the adult stage of N. americanus

    Exploring the roles of academic self-concept and perseverance of effort in self-assessment practices

    No full text
    Based on the self-system processes model of motivation, we explored the mediating role of academic self-concept in the relationship between perseverance of effort and self-assessment. The results showed that perseverance of effort has a positive but not statistically significant association with self-assessment when controlling academic self-concept. The results supported our hypotheses that academic self-concept, whether at the domain-specific or component-specific level, significantly mediated the effect of the perseverance of effort on self-assessment, lending empirical support to the closer conceptual link between self-perceptions and self-assessment practices in learning. The results contribute to the literature of the three research lines (grit, academic self-concept and self-assessment) and suggest that academic self-concept enhancement interventions are beneficial not only to academic achievement based on the reciprocal relationship that has been well documented in the self-concept literature but also to self-assessment in the light of the self-system processes model of motivation
    corecore